scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Computer science & Artificial neural network. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Journal ArticleDOI
TL;DR: This work designs scalable, semi-automated mechanisms to collect a large and diverse set of ground truth data using a combination of manual annotation and automated tracking, and introduces a detection-by-tracking method that increases smoothness while reducing the computational cost.
Abstract: We present a system for real-time hand-tracking to drive virtual and augmented reality (VR/AR) experiences. Using four fisheye monochrome cameras, our system generates accurate and low-jitter 3D hand motion across a large working volume for a diverse set of users. We achieve this by proposing neural network architectures for detecting hands and estimating hand keypoint locations. Our hand detection network robustly handles a variety of real world environments. The keypoint estimation network leverages tracking history to produce spatially and temporally consistent poses. We design scalable, semi-automated mechanisms to collect a large and diverse set of ground truth data using a combination of manual annotation and automated tracking. Additionally, we introduce a detection-by-tracking method that increases smoothness while reducing the computational cost; the optimized system runs at 60Hz on PC and 30Hz on a mobile processor. Together, these contributions yield a practical system for capturing a user's hands and is the default feature on the Oculus Quest VR headset powering input and social presence.

106 citations

Proceedings ArticleDOI
01 Mar 2019
TL;DR: The authors introduce a large-scale crowdsourced text adventure game as a research platform for studying grounded dialogue, where agents can perceive, emote, and act whilst conducting dialogue with other agents.
Abstract: We introduce a large-scale crowdsourced text adventure game as a research platform for studying grounded dialogue. In it, agents can perceive, emote, and act whilst conducting dialogue with other agents. Models and humans can both act as characters within the game. We describe the results of training state-of-the-art generative and retrieval models in this setting. We show that in addition to using past dialogue, these models are able to effectively use the state of the underlying world to condition their predictions. In particular, we show that grounding on the details of the local environment, including location descriptions, and the objects (and their affordances) and characters (and their previous actions) present within it allows better predictions of agent behavior and dialogue. We analyze the ingredients necessary for successful grounding in this setting, and how each of these factors relate to agents that can talk and act successfully.

106 citations

Proceedings Article
09 Jun 2014
TL;DR: In this article, an extra noise layer is added to the network to adapt the network outputs to match the noisy label distribution, which can be estimated as part of the training process and involve simple modifications to current training infrastructures.
Abstract: The availability of large labeled datasets has allowed Convolutional Network models to achieve impressive recognition results. However, in many settings manual annotation of the data is impractical; instead our data has noisy labels, i.e. there is some freely available label for each image which may or may not be accurate. In this paper, we explore the performance of discriminatively-trained Convnets when trained on such noisy data. We introduce an extra noise layer into the network which adapts the network outputs to match the noisy label distribution. The parameters of this noise layer can be estimated as part of the training process and involve simple modifications to current training infrastructures for deep networks. We demonstrate the approaches on several datasets, including large scale experiments on the ImageNet classification benchmark.

106 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: This paper proposed a new evaluation framework for adversarial attacks on seq2seq models that takes the semantic equivalence of the pre-and post-perturbation input into account, and showed that performing untargeted adversarial training with meaning-preserving attacks is beneficial to the model in terms of adversarial robustness, without hurting test performance.
Abstract: Adversarial examples — perturbations to the input of a model that elicit large changes in the output — have been shown to be an effective way of assessing the robustness of sequence-to-sequence (seq2seq) models. However, these perturbations only indicate weaknesses in the model if they do not change the input so significantly that it legitimately results in changes in the expected output. This fact has largely been ignored in the evaluations of the growing body of related literature. Using the example of untargeted attacks on machine translation (MT), we propose a new evaluation framework for adversarial attacks on seq2seq models that takes the semantic equivalence of the pre- and post-perturbation input into account. Using this framework, we demonstrate that existing methods may not preserve meaning in general, breaking the aforementioned assumption that source side perturbations should not result in changes in the expected output. We further use this framework to demonstrate that adding additional constraints on attacks allows for adversarial perturbations that are more meaning-preserving, but nonetheless largely change the output sequence. Finally, we show that performing untargeted adversarial training with meaning-preserving attacks is beneficial to the model in terms of adversarial robustness, without hurting test performance. A toolkit implementing our evaluation framework is released at https://github.com/pmichel31415/teapot-nlp.

106 citations

Journal ArticleDOI
TL;DR: The experiments show that it is possible to tune simulation parameters to improve sim2real predictivity (e.g. improving SRCC from 0.18 to 0.844) – increasing confidence that in-simulation comparisons will translate to deployed systems in reality.
Abstract: Does progress in simulation translate to progress on robots? If one method outperforms another in simulation, how likely is that trend to hold in reality on a robot? We examine this question for embodied PointGoal navigation, developing engineering tools and a research paradigm for evaluating a simulator by its sim2real predictivity. First, we develop Habitat-PyRobot Bridge (HaPy), a library for seamless execution of identical code on simulated agents and robots, transferring simulation-trained agents to a LoCoBot platform with a one-line code change. Second, we investigate the sim2real predictivity of Habitat-Sim for PointGoal navigation. We 3D-scan a physical lab space to create a virtualized replica, and run parallel tests of 9 different models in reality and simulation. We present a new metric called Sim-vs-Real Correlation Coefficient (SRCC) to quantify predictivity. We find that SRCC for Habitat as used for the CVPR19 challenge is low (0.18 for the success metric), suggesting that performance differences in this simulator-based challenge do not persist after physical deployment. This gap is largely due to AI agents learning to exploit simulator imperfections, abusing collision dynamics to 'slide' along walls, leading to shortcuts through otherwise non-navigable space. Naturally, such exploits do not work in the real world. Our experiments show that it is possible to tune simulation parameters to improve sim2real predictivity (e.g. improving $SRCC_{Succ}$ from 0.18 to 0.844), increasing confidence that in-simulation comparisons will translate to deployed systems in reality.

106 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229