scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Computer science & Artificial neural network. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Journal ArticleDOI
TL;DR: The purpose of this article is to describe, in a way that is amenable to the nonspecialist, the key speech processing algorithms that enable reliable, fully hands-free speech interaction with digital home assistants.
Abstract: Once a popular theme of futuristic science fiction or far-fetched technology forecasts, digital home assistants with a spoken language interface have become a ubiquitous commodity today. This success has been made possible by major advancements in signal processing and machine learning for so-called far-field speech recognition, where the commands are spoken at a distance from the sound-capturing device. The challenges encountered are quite unique and different from many other use cases of automatic speech recognition (ASR). The purpose of this article is to describe, in a way that is amenable to the nonspecialist, the key speech processing algorithms that enable reliable, fully hands-free speech interaction with digital home assistants. These technologies include multichannel acoustic echo cancellation (MAEC), microphone array processing and dereverberation techniques for signal enhancement, reliable wake-up word and end-of-interaction detection, and high-quality speech synthesis as well as sophisticated statistical models for speech and language, learned from large amounts of heterogeneous training data. In all of these fields, deep learning (DL) has played a critical role.

115 citations

Patent
19 Aug 2008
TL;DR: In this paper, user affinity is defined as measuring positive and negative interactions by users as both senders and recipients of messages generated by applications in social networks, and is calculated for different types of messages and interactions provided by applications.
Abstract: Applications in social networks support interaction between members through various types of channels such as email, notifications, newsfeed, and so forth. For each channel, applications are ranked based on their user affinity measures. User affinity is based on measuring positive and negative interactions by users as both senders and recipients of messages generated by applications. Metrics are computed for the different types of messages and interactions provided by applications. For each channel, an application receives user affinity score based on specific weighted combination of the metrics. Applications use channel resources to send messages to increase their user base. Given the large number of applications that are available, the extent to which applications are allowed to use channels is controlled, limiting their resource consumption. User affinity scores of applications calculated for a channel are used to decide the allocation of the number of messages allowed for an application for a channel.

115 citations

Posted Content
TL;DR: This work directly fine-tune the pre-trained BERT models on transcribed speech using a Connectionist Temporal Classification (CTC) loss instead of feeding the representations into a task-specific model, demonstrating that self-supervision can enable speech recognition systems trained on a near-zero amount of transcribed data.
Abstract: We compare self-supervised representation learning algorithms which either explicitly quantize the audio data or learn representations without quantization. We find the former to be more accurate since it builds a good vocabulary of the data through vq-wav2vec [1] to enable learning of effective representations in subsequent BERT training. Different to previous work, we directly fine-tune the pre-trained BERT models on transcribed speech using a Connectionist Temporal Classification (CTC) loss instead of feeding the representations into a task-specific model. We also propose a BERT-style model learning directly from the continuous audio data and compare pre-training on raw audio to spectral features. Fine-tuning a BERT model on 10 hour of labeled Librispeech data with a vq-wav2vec vocabulary is almost as good as the best known reported system trained on 100 hours of labeled data on testclean, while achieving a 25% WER reduction on test-other. When using only 10 minutes of labeled data, WER is 25.2 on test-other and 16.3 on test-clean. This demonstrates that self-supervision can enable speech recognition systems trained on a near-zero amount of transcribed data.

115 citations

Proceedings ArticleDOI
30 Oct 2020
TL;DR: This work develops three classes of attacks to systematically study information that might be leaked by embeddings, and extensively evaluates the attacks on various state-of-the-art embedding models in the text domain.
Abstract: Embeddings are functions that map raw input data to low-dimensional vector representations, while preserving important semantic information about the inputs. Pre-training embeddings on a large amount of unlabeled data and fine-tuning them for downstream tasks is now a de facto standard in achieving state of the art learning in many domains. We demonstrate that embeddings, in addition to encoding generic semantics, often also present a vector that leaks sensitive information about the input data. We develop three classes of attacks to systematically study information that might be leaked by embeddings. First, embedding vectors can be inverted to partially recover some of the input data. As an example, we show that our attacks on popular sentence embeddings recover between 50%--70% of the input words (F1 scores of 0.5--0.7). Second, embeddings may reveal sensitive attributes inherent in inputs and independent of the underlying semantic task at hand. Attributes such as authorship of text can be easily extracted by training an inference model on just a handful of labeled embedding vectors. Third, embedding models leak moderate amount of membership information for infrequent training data inputs. We extensively evaluate our attacks on various state-of-the-art embedding models in the text domain. We also propose and evaluate defenses that can prevent the leakage to some extent at a minor cost in utility.

114 citations

Posted Content
TL;DR: 10 probing tasks designed to capture simple linguistic features of sentences are introduced and used to study embeddings generated by three different encoders trained in eight distinct ways, uncovering intriguing properties of bothencoders and training methods.
Abstract: Although much effort has recently been devoted to training high-quality sentence embeddings, we still have a poor understanding of what they are capturing. "Downstream" tasks, often based on sentence classification, are commonly used to evaluate the quality of sentence representations. The complexity of the tasks makes it however difficult to infer what kind of information is present in the representations. We introduce here 10 probing tasks designed to capture simple linguistic features of sentences, and we use them to study embeddings generated by three different encoders trained in eight distinct ways, uncovering intriguing properties of both encoders and training methods.

114 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229