scispace - formally typeset
Search or ask a question
Institution

Finisar

CompanySunnyvale, California, United States
About: Finisar is a company organization based out in Sunnyvale, California, United States. It is known for research contribution in the topics: Signal & Laser. The organization has 900 authors who have published 1523 publications receiving 22634 citations.


Papers
More filters
Patent
Donald A. Ice1
29 Mar 2007
TL;DR: In this article, an EMI shield includes a base and plurality of flanges extending from a perimeter of the base to an optical subassembly (OSA) opening and a plurality of complementary structures.
Abstract: An electromagnetic interference (“EMI”) shield that can help control the emission of electromagnetic radiation from an optoelectronic module in which the EMI shield is positioned. In one example embodiment, an EMI shield includes a base and plurality of flanges extending from a perimeter of the base. The base defines an optical subassembly (“OSA”) opening and a plurality of complementary structures. The OSA opening is configured to receive an OSA. Each complementary structure is configured to engage a complementary structure of an OSA connector block.

6 citations

Patent
19 Mar 2010
TL;DR: In this paper, a VCSEL includes a plurality of semiconductor layers, an insulative region, a resistive region, and a remainder region, including a lower mirror, an active region and an upper mirror.
Abstract: In one embodiment, a VCSEL includes a plurality of semiconductor layers, an insulative region, a resistive region, and a remainder region. The semiconductor layers include a lower mirror, an active region, and an upper mirror. The active region is disposed over the lower mirror and includes a first lasing region. The upper mirror is disposed over the active region. The insulative region and the resistive region are integrally formed in the semiconductor layers. The remainder region includes the semiconductor layers except for the insulative region and the resistive region integrally formed in the semiconductor layers. The insulative region is disposed between the resistive region and the remainder region.

6 citations

Patent
William Freeman1, Dallas Meyer
05 Apr 2002
TL;DR: In this article, a micro electromechanical (MEMS) electromagnetic optical switch capable of redirecting light signals to a plurality of different output structures was proposed, which utilizes a movable mirror to redirect light signals.
Abstract: A micro electromechanical (MEMS) electromagnetic optical switch capable of redirecting light signals to a plurality of different output structures. The optical switch utilizes a movable mirror to redirect light signals. The mirror is magnetically moved into a predetermined fixed position by a magnetic member such that the mirror is positioned to redirect a light signal into one of a plurality of output structures. An electrical assembly induces a temporary magnetic field across the magnetic member to initiate the movement of the mirror.

6 citations

Patent
08 Mar 2004
TL;DR: In this paper, a header assembly is provided that includes a base having a device side and a connector side, and the header assembly further includes a platform attached to the base and positioned in a predetermined orientation with respect to base.
Abstract: A header assembly is provided that includes a base having a device side and a connector side. The header assembly further includes a platform attached to the base and positioned in a predetermined orientation with respect to the base. The device side of the base cooperates with a cap to define a hermetic chamber wherein one or more optoelectronic components, such as optical transmitters and optical receivers, are disposed. The platform includes an inside portion proximate the device side of the base and an outside portion proximate the connector side of the base, and the platform further includes at least one conductive pathway extending substantially through the platform so as to facilitate electrical communication between components disposed on the device side of the base, and circuits, devices and systems disposed on the connector side of the base.

6 citations

Patent
06 Nov 2003
TL;DR: In this article, a time division multiplexing analog control signal interface is employed to provide feedback to the controller relating to the operation of the control devices in an optical transceiver with a post-amplifier/laser driver.
Abstract: An optical transceiver module having a multiplexing analog control interface. The optical transceiver module comprises a controller and integrated post-amplifier/laser driver, which are included on a printed circuit board associated with the module. Transmitting and receiving optical sub-assemblies are also included in the module. A time division multiplexing analog control signal interface interconnects the controller with the integrated post-amplifier/laser driver. Digital control signals produced by the controller are converted and combined into a multiplexed analog control signal and transmitted via the interface to the integrated post-amplifier/laser driver. After receipt by the integrated post-amplifier/laser driver, the multiplexed analog control signal is divided into discrete analog control signals and forwarded to a plurality of control devices that use the control signals to modify a plurality of operating parameters of the transceiver module. The time division multiplexing analog control signal interface can also be employed to provide feedback to the controller relating to the operation of the control devices.

6 citations


Authors

Showing all 900 results

NameH-indexPapersCitations
Yaron Silberberg8746228905
Ray T. Chen5488912078
Naresh R. Shanbhag493259202
N.A. Olsson381586360
Andrew C. Singer383026721
Jae-Hyun Ryou352605038
Joyce K. S. Poon331564184
Yasuhiro Matsui311432844
Ying Luo301052992
Lewis B. Aronson29742251
Thomas W. Mossberg291312611
Daniel Mahgerefteh25881830
Gil Cohen25722564
Christoph M. Greiner241001423
James A. Cox23721718
Network Information
Related Institutions (5)
Nippon Telegraph and Telephone
22.3K papers, 430.4K citations

84% related

Alcatel-Lucent
53.3K papers, 1.4M citations

84% related

Fujitsu
75K papers, 827.5K citations

83% related

NEC
57.6K papers, 835.9K citations

82% related

Bell Labs
59.8K papers, 3.1M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20221
20213
202019
201929
201821
201743