scispace - formally typeset
Search or ask a question
Institution

Institute for Systems Biology

NonprofitSeattle, Washington, United States
About: Institute for Systems Biology is a nonprofit organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Population & Proteomics. The organization has 1277 authors who have published 2777 publications receiving 353165 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings suggest that, via NF-κB activation, cytokines induce a concurrent anti-apoptotic pathway that may be critical for preserving islet integrity and viability during the progression of insulitis in type 1 diabetes.
Abstract: Aims/hypothesis The destruction of pancreatic beta cells leading to type 1 diabetes in humans is thought to occur mainly through apoptosis and necrosis induced by activated macrophages and T cells, and in which secreted cytokines play a significant role. The transcription factor nuclear factor kappa-B (NF-κB) plays an important role in mediating the apoptotic action of cytokines in beta cells. We therefore sought to determine the changes in expression of genes modulated by NF-κB in human islets exposed to a combination of IL1β, TNF-α and IFN-γ.

89 citations

Journal ArticleDOI
TL;DR: Systems Biology has a mission that puts it at odds with traditional paradigms of physics and molecular biology, such as the simplicity requested by Occam's razor and minimum energy/maximal efficiency, which are shown to be inapt.

88 citations

Journal ArticleDOI
TL;DR: The positive feedback of cI repressor gene transcription, enhanced by the CI dimer cooperative binding, is the key to the robustness of the phage lambda genetic switch against mutations and fluctuations in kinetic parameter values.
Abstract: Based on the dynamical structure theory for complex networks recently developed by one of us and on the physical-chemical models for gene regulation, developed by Shea and Ackers in the 1980's, we formulate a direct and concise mathematical framework for the genetic switch controlling phage lambda life cycles, which naturally includes the stochastic effect. The dynamical structure theory states that the dynamics of a complex network is determined by its four elementary components: The dissipation (analogous to degradation), the stochastic force, the driving force determined by a potential, and the transverse force. The potential may be interpreted as a landscape for the phage development in terms of attractive basins, saddle points, peaks and valleys. The dissipation gives rise to the adaptivity of the phage in the landscape defined by the potential: The phage always has the tendency to approach the bottom of the nearby attractive basin. The transverse force tends to keep the network on the equal-potential contour of the landscape. The stochastic fluctuation gives the phage the ability to search around the potential landscape by passing through saddle points. With molecular parameters in our model fixed primarily by the experimental data on wild-type phage and supplemented by data on one mutant, our calculated results on mutants agree quantitatively with the available experimental observations on other mutants for protein number, lysogenization frequency, and a lysis frequency in lysogen culture. The calculation reproduces the observed robustness of the phage lambda genetic switch. This is the first mathematical description that successfully represents such a wide variety of major experimental phenomena. Specifically, we find: (1) The explanation for both the stability and the efficiency of phage lambda genetic switch is the exponential dependence of saddle point crossing rate on potential barrier height, a result of the stochastic motion in a landscape; and (2) The positive feedback of cI repressor gene transcription, enhanced by the CI dimer cooperative binding, is the key to the robustness of the phage lambda genetic switch against mutations and fluctuations in kinetic parameter values.

88 citations

Journal ArticleDOI
TL;DR: It is found that malaria parasites use two overlapping, extensive, and independent programs of translational repression across sporozoite maturation to temporally regulate protein expression, thus promoting their successful development and vector-to-host transition.
Abstract: Plasmodium sporozoites are transmitted from infected mosquitoes to mammals, and must navigate the host skin and vasculature to infect the liver. This journey requires distinct proteomes. Here, we report the dynamic transcriptomes and proteomes of both oocyst sporozoites and salivary gland sporozoites in both rodent-infectious Plasmodium yoelii parasites and human-infectious Plasmodium falciparum parasites. The data robustly define mRNAs and proteins that are upregulated in oocyst sporozoites (UOS) or upregulated in infectious sporozoites (UIS) within the salivary glands, including many that are essential for sporozoite functions in the vector and host. Moreover, we find that malaria parasites use two overlapping, extensive, and independent programs of translational repression across sporozoite maturation to temporally regulate protein expression. Together with gene-specific validation experiments, these data indicate that two waves of translational repression are implemented and relieved at different times during sporozoite maturation, migration and infection, thus promoting their successful development and vector-to-host transition.

88 citations

Journal ArticleDOI
TL;DR: Current understanding of how retinoid signaling functions to coordinate skeletal development is described and future directions and clinical implications in this field are discussed.
Abstract: Several years ago, it was discovered that an imbalance of vitamin A during embryonic development has dramatic teratogenic effects. These effects have since been attributed to vitamin A's most active metabolite, retinoic acid (RA), which itself profoundly influences the development of multiple organs including the skeleton. After decades of study, researchers are still uncovering the molecular basis whereby retinoids regulate skeletal development. Retinoid signaling involves several components, from the enzymes that control the synthesis and degradation of RA, to the cytoplasmic RA-binding proteins, and the nuclear receptors that modulate gene transcription. As new functions for each component continue to be discovered, their developmental roles appear increasingly complex. Interestingly, each component has been implicated in skeletal development. Moreover, retinoid signaling comes into play at distinct stages throughout the developmental sequence of skeletogenesis, highlighting a fundamental role for this pathway in forming the adult skeleton. Consistent with these roles, manipulation of the retinoid signaling pathway significantly affects the expression of the skeletogenic master regulatory factors, Sox9 and Cbfa1. In addition to the fact that we now have a greater understanding of the retinoid signaling pathway on a molecular level, much more information is now available to begin placing retinoid signaling within the context of other factors that regulate skeletogenesis. Here we review these recent advances and describe our current understanding of how retinoid signaling functions to coordinate skeletal development. We also discuss future directions and clinical implications in this field.

87 citations


Authors

Showing all 1292 results

NameH-indexPapersCitations
Younan Xia216943175757
Ruedi Aebersold182879141881
David Haussler172488224960
Steven P. Gygi172704129173
Nahum Sonenberg167647104053
Leroy Hood158853128452
Mark H. Ellisman11763755289
Wei Zhang112118993641
John Ralph10944239238
Eric H. Davidson10645447058
James R. Heath10342558548
Alan Aderem9924646682
Anne-Claude Gingras9733640714
Trey Ideker9730672276
Michael H. Gelb9450634714
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202260
2021216
2020204
2019188
2018168