scispace - formally typeset
Search or ask a question
Institution

Institute for Systems Biology

NonprofitSeattle, Washington, United States
About: Institute for Systems Biology is a nonprofit organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Population & Proteomics. The organization has 1277 authors who have published 2777 publications receiving 353165 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The cross-species comparison has facilitated the identification of 60 genes in human and 61 in mouse, including a potential RNA gene for which the introns are more conserved across species than the exons, and potential cis-regulatory elements.
Abstract: In mammals, the Major Histocompatibility Complex class I and II gene clusters are separated by an ∼700-kb stretch of sequence called the MHC class III region, which has been associated with susceptibility to numerous diseases. To facilitate understanding of this medically important and architecturally interesting portion of the genome, we have sequenced and analyzed both the human and mouse class III regions. The cross-species comparison has facilitated the identification of 60 genes in human and 61 in mouse, including a potential RNA gene for which the introns are more conserved across species than the exons. Delineation of global organization, gene structure, alternative splice forms, protein similarities, and potential cis-regulatory elements leads to several conclusions: (1) The human MHC class III region is the most gene-dense region of the human genome: >14% of the sequence is coding, ∼72% of the region is transcribed, and there is an average of 8.5 genes per 100 kb. (2) Gene sizes, number of exons, and intergenic distances are for the most part similar in both species, implying that interspersed repeats have had little impact in disrupting the tight organization of this densely packed set of genes. (3) The region contains a heterogeneous mixture of genes, only a few of which have a clearly defined and proven function. Although many of the genes are of ancient origin, some appear to exist only in mammals and fish, implying they might be specific to vertebrates. (4) Conserved noncoding sequences are found primarily in or near the 5′-UTR or the first intron of genes, and seldom in the intergenic regions. Many of these conserved blocks are likely to be cis-regulatory elements.

129 citations

Journal ArticleDOI
TL;DR: The results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility, as well as a dominant-negative mutation in an FA-like patient.
Abstract: Fanconi anaemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. A total of 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, ‘FA-R’, which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and paediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders, our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility. Fanconi anaemia is an inherited disorder characterised by developmental abnormalities, bone marrow failure and predisposition to cancer. Here the authors report a de novo mutation in the DNA repair gene Rad51in an atypical subtype of Fanconi anaemia.

129 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the N terminus of flagellin can relieve the requirement for NAIP5 during the activation of the NLRC4 inflammasome, and the results indicate thatNAIP5 regulates the apparent specificity of theNLRC4Inflammasomes for distinct bacterial ligands.
Abstract: Inflammasomes are cytosolic multiprotein complexes that assemble in response to infectious or noxious stimuli and activate the CASPASE-1 protease. The inflammasome containing the nucleotide binding domain-leucine-rich repeat (NBD-LRR) protein NLRC4 (interleukin-converting enzyme protease-activating factor [IPAF]) responds to the cytosolic presence of bacterial proteins such as flagellin or the inner rod component of bacterial type III secretion systems (e.g., Salmonella PrgJ). In some instances, such as infection with Legionella pneumophila, the activation of the NLRC4 inflammasome requires the presence of a second NBD-LRR protein, NAIP5. NAIP5 also is required for NLRC4 activation by the minimal C-terminal flagellin peptide, which is sufficient to activate NLRC4. However, NLRC4 activation is not always dependent upon NAIP5. In this report, we define the molecular requirements for NAIP5 in the activation of the NLRC4 inflammasome. We demonstrate that the N terminus of flagellin can relieve the requirement for NAIP5 during the activation of the NLRC4 inflammasome. We also demonstrate that NLRC4 responds to the Salmonella protein PrgJ independently of NAIP5. Our results indicate that NAIP5 regulates the apparent specificity of the NLRC4 inflammasome for distinct bacterial ligands.

129 citations

Journal ArticleDOI
TL;DR: New content and features in the BiGG Models repository are detail, continuing the original effort to connect each model to genome annotations and external databases as well as standardization of reactions and metabolites.
Abstract: The BiGG Models knowledge base (http://bigg.ucsd.edu) is a centralized repository for high-quality genome-scale metabolic models. For the past 12 years, the website has allowed users to browse and search metabolic models. Within this update, we detail new content and features in the repository, continuing the original effort to connect each model to genome annotations and external databases as well as standardization of reactions and metabolites. We describe the addition of 31 new models that expand the portion of the phylogenetic tree covered by BiGG Models. We also describe new functionality for hosting multi-strain models, which have proven to be insightful in a variety of studies centered on comparisons of related strains. Finally, the models in the knowledge base have been benchmarked using Memote, a new community-developed validator for genome-scale models to demonstrate the improving quality and transparency of model content in BiGG Models.

129 citations

Journal ArticleDOI
TL;DR: A deeper understanding of the mechanisms driving CaSR signalling in different tissues, aided by a systems biology approach, will be instrumental in developing novel drugs that target the CaSR or its ligands in cancer.

129 citations


Authors

Showing all 1292 results

NameH-indexPapersCitations
Younan Xia216943175757
Ruedi Aebersold182879141881
David Haussler172488224960
Steven P. Gygi172704129173
Nahum Sonenberg167647104053
Leroy Hood158853128452
Mark H. Ellisman11763755289
Wei Zhang112118993641
John Ralph10944239238
Eric H. Davidson10645447058
James R. Heath10342558548
Alan Aderem9924646682
Anne-Claude Gingras9733640714
Trey Ideker9730672276
Michael H. Gelb9450634714
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202260
2021216
2020204
2019188
2018168