scispace - formally typeset
Search or ask a question
Institution

Missouri University of Science and Technology

EducationRolla, Missouri, United States
About: Missouri University of Science and Technology is a education organization based out in Rolla, Missouri, United States. It is known for research contribution in the topics: Artificial neural network & Control theory. The organization has 9380 authors who have published 21161 publications receiving 462544 citations. The organization is also known as: Missouri S&T & University of Missouri–Rolla.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the feasibility of hybrid fiber-reinforced polymer rods that demonstrate the important safety features of self-monitoring capability and pseudo-ductility is demonstrated, and the rods are intended to be the basis of improved pultruded reinforcements for concrete or other civil applications where safety is of critical importance.

131 citations

Journal ArticleDOI
TL;DR: The crystal structure of the potential antitumor metal compound exhibited remarkable activity against drug-sensitive and drug-resistant breast cancer cell lines and was relatively nontoxic toward the normal mammary epithelial cells.
Abstract: The crystal structure of the potential antitumor metal compound, viz. chloro, mono(phenanthrenequinone thiosemicarbazonato) palladium(II) dimethyl formamide solvate, is reported. The central palladium(II) atom is in a square planar environment provided by the tridentate, monoanionic thiosemicarbazone ligand and the ancillary chloride ion. The compound exhibited remarkable activity against drug-sensitive and drug-resistant breast cancer cell lines and was relatively nontoxic toward the normal mammary epithelial cells. The drug-induced killing effect against breast cancer cell lines was predominantly mediated via apoptosis, a physiologic form of cell death.

131 citations

Journal ArticleDOI
TL;DR: In this article, a new simulation method with the first order approximation and series expansions is proposed to improve the accuracy and efficiency of the Rice/FORM method, which maps the general stochastic process of the response into a Gaussian process, whose samples are then generated by the Expansion Optimal Linear Estimation if the response is stationary or by the Orthogonal Series Expansion if a response is non-stationary.
Abstract: Time-variant reliability is often evaluated by Rice's formula combined with the First Order Reliability Method (FORM). To improve the accuracy and efficiency of the Rice/FORM method, this work develops a new simulation method with the first order approximation and series expansions. The approximation maps the general stochastic process of the response into a Gaussian process, whose samples are then generated by the Expansion Optimal Linear Estimation if the response is stationary or by the Orthogonal Series Expansion if the response is non-stationary. As the computational cost largely comes from estimating the covariance of the response at expansion points, a cheaper surrogate model of the covariance is built and allows for significant reduction in computational cost. In addition to its superior accuracy and efficiency over the Rice/FORM method, the proposed method can also produce the failure rate and probability of failure with respect to time for a given period of time within only one reliability analysis.

131 citations

Journal ArticleDOI
TL;DR: The design experience demonstrated systems trade-offs present in a practical vehicle and UAV capabilities even using off-the-shelf component integration, and could be used for aerial mapping, environmental monitoring, and search and rescue at a cost significantly lower than using traditional full-size aircraft for the same missions.
Abstract: The overall UAV approach discussed in this article provided satisfactory performance for the avionics systems; however, the design is limited with regard to the wireless link and the image processing. Future development will focus on redesign of the airframe platform, the wireless link, and the image processing. UAV flight characteristics need to be better understood and more thoroughly tested to accommodate less-than-ideal flight conditions. Full analyses of the link margin for spectrum management and of risk assessment to handle flight failure/termination events, e.g., loss of data link, GPS, or autopilot, are needed. Overall, the design experience demonstrated systems trade-offs present in a practical vehicle and UAV capabilities even using off-the-shelf component integration. The prototype UAV could be used for aerial mapping, environmental monitoring, and search and rescue at a cost significantly lower than using traditional full-size aircraft for the same missions.

131 citations

Proceedings Article
01 Jan 2009
TL;DR: The need of the partial knowledge of the nonlinear system dynamics is relaxed in the development of a novel approach to ADP using a two part process: online system identification and offline optimal control training.
Abstract: The optimal control of linear systems accompanied by quadratic cost functions can be achieved by solving the well-known Riccati equation. However, the optimal control of nonlinear discrete-time systems is a much more challenging task that often requires solving the nonlinear Hamilton―Jacobi―Bellman (HJB) equation. In the recent literature, discrete-time approximate dynamic programming (ADP) techniques have been widely used to determine the optimal or near optimal control policies for affine nonlinear discrete-time systems. However, an inherent assumption of ADP requires the value of the controlled system one step ahead and at least partial knowledge of the system dynamics to be known. In this work, the need of the partial knowledge of the nonlinear system dynamics is relaxed in the development of a novel approach to ADP using a two part process: online system identification and offline optimal control training. First, in the system identification process, a neural network (NN) is tuned online using novel tuning laws to learn the complete plant dynamics so that a local asymptotic stability of the identification error can be shown. Then, using only the learned NN system model, offline ADP is attempted resulting in a novel optimal control law. The proposed scheme does not require explicit knowledge of the system dynamics as only the learned NN model is needed. The proof of convergence is demonstrated. Simulation results verify theoretical conjecture.

131 citations


Authors

Showing all 9433 results

NameH-indexPapersCitations
Robert Stone1601756167901
Tobin J. Marks1591621111604
Jeffrey R. Long11842568415
Xiao-Ming Chen10859642229
Mark C. Hersam10765946813
Michael Schulz10075950719
Christopher J. Chang9830736101
Marco Cavaglia9337260157
Daniel W. Armstrong9375935819
Sajal K. Das85112429785
Ming-Liang Tong7936423537
Ludwig J. Gauckler7851725926
Rodolphe Clérac7850622604
David W. Fahey7731530176
Kai Wang7551922819
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Virginia Tech
95.2K papers, 2.9M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022162
20211,047
20201,180
20191,195
20181,108