scispace - formally typeset
Search or ask a question
Institution

Missouri University of Science and Technology

EducationRolla, Missouri, United States
About: Missouri University of Science and Technology is a education organization based out in Rolla, Missouri, United States. It is known for research contribution in the topics: Artificial neural network & Control theory. The organization has 9380 authors who have published 21161 publications receiving 462544 citations. The organization is also known as: Missouri S&T & University of Missouri–Rolla.


Papers
More filters
Journal ArticleDOI
TL;DR: An investigation was made of the treatability of methyl tert-butyl ether in five groundwaters with highly varied water quality characteristics, and granular activated carbon (GAC) was effective at most conditions, although it was also the most costly alternative for most waters.

103 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal properties of the short carbon fibers (SCFs) filled erythritol phase change composites (PCCs) were investigated experimentally.

103 citations

Journal ArticleDOI
TL;DR: Half-metallic ferrimagnetic materials such as Fe(3)O(4) are of interest for use in spintronic devices that exploit both the spin and charge of an electron in spin-dependent charge transport.
Abstract: Half-metallic ferrimagnetic materials such as Fe3O4 are of interest for use in spintronic devices. These devices exploit both the spin and charge of an electron in spin-dependent charge transport. Epitaxial thin films of Fe3O4 have been grown on the three low-index planes of gold by electrodeposition. On Au(110), a [110] Fe3O4 orientation that is aligned with the underlying Au(110) substrate is observed. Thin films on Au(100) grow with three different orientations: [100], [111], and [511]. On Au(111), both [111] and [511] orientations of Fe3O4 are observed. The [511] orientations are the result of twinning on {111} planes. A polarization value of approximately −40% at the Fermi level was measured by spin-polarized photoemission at room temperature for a thin film on Au(111).

103 citations

Journal ArticleDOI
TL;DR: The data showed the flow-through cell to be unequivocally the most robust dissolution method for the nanoparticulate system, and the dissolution profiles conform closely to the classic Noyes–Whitney model, indicating that the increase in dissolution rate as particles become smaller results from the increased in surface area and solubility of the nanoparticles.
Abstract: Many existing and new drugs fail to be fully utilized because of their limited bioavailability due to poor solubility in aqueous media. Given the emerging importance of using nanoparticles as a promising way to enhance the dissolution rate of these drugs, a method must be developed to adequately reflect the rate-change due to size reduction. At present, there is little published work examining the suitability of different dissolution apparatus for nanoparticles. Four commonly-used methods (the paddle, rotating basket and flow-through cell from the US Pharmacopia, and a dialysis method) were employed to measure the dissolution rates of cefuroxime axetil as a model for nanodrug particles. Experimental rate ratios between the nanoparticles and their unprocessed form were 6.95, 1.57 and 1.00 for the flow-through, basket and paddle apparatus respectively. In comparison, the model-predicted value was 7.97. Dissolution via dialysis was rate-limited by the membrane. The data showed the flow-through cell to be unequivocally the most robust dissolution method for the nanoparticulate system. Furthermore, the dissolution profiles conform closely to the classic Noyes–Whitney model, indicating that the increase in dissolution rate as particles become smaller results from the increase in surface area and solubility of the nanoparticles.

103 citations

Journal ArticleDOI
TL;DR: This work proposes a low-complexity and high-performance design that derives a lower bound that demands low computational effort and approximates, with a constant shift, the mutual information for various settings.
Abstract: This paper investigates linear precoding scheme that maximizes mutual information for multiple-input multiple-output (MIMO) channels with finite-alphabet inputs. In contrast with recent studies, optimizing mutual information directly with extensive computational burden, this work proposes a low-complexity and high-performance design. It derives a lower bound that demands low computational effort and approximates, with a constant shift, the mutual information for various settings. Based on this bound, the precoding problem is solved efficiently. Numerical examples show the efficacy of this method for constant and fading MIMO channels. Compared to its conventional counterparts, the proposed method reduces the computational complexity without performance loss.

102 citations


Authors

Showing all 9433 results

NameH-indexPapersCitations
Robert Stone1601756167901
Tobin J. Marks1591621111604
Jeffrey R. Long11842568415
Xiao-Ming Chen10859642229
Mark C. Hersam10765946813
Michael Schulz10075950719
Christopher J. Chang9830736101
Marco Cavaglia9337260157
Daniel W. Armstrong9375935819
Sajal K. Das85112429785
Ming-Liang Tong7936423537
Ludwig J. Gauckler7851725926
Rodolphe Clérac7850622604
David W. Fahey7731530176
Kai Wang7551922819
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Virginia Tech
95.2K papers, 2.9M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022162
20211,047
20201,180
20191,195
20181,108