scispace - formally typeset
Search or ask a question
Institution

Missouri University of Science and Technology

EducationRolla, Missouri, United States
About: Missouri University of Science and Technology is a education organization based out in Rolla, Missouri, United States. It is known for research contribution in the topics: Artificial neural network & Control theory. The organization has 9380 authors who have published 21161 publications receiving 462544 citations. The organization is also known as: Missouri S&T & University of Missouri–Rolla.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the via-plate capacitance for a via transition to a multilayer printed circuit board is evaluated analytically in terms of higher order parallel-plate modes.
Abstract: The via-plate capacitance for a via transition to a multilayer printed circuit board is evaluated analytically in terms of higher order parallel-plate modes. The Green's function in a bounded coaxial cavity for a concentric magnetic ring current is first derived by introducing reflection coefficients for cylindrical waves at the inner and outer cavity walls. These walls can be perfect electric conductor (PEC)/perfect magnetic conductor(PMC) or a nonreflective perfectly matched layer. By further assuming a magnetic frill current on the via-hole in the metal plate, an analytical formula is derived for the via barrel-plate capacitance by summing the higher order modes in the bounded coaxial cavity. The convergence of the formula with the number of modes, as well as with the radius of the outer PEC/PMC wall is discussed. The analytical formula is validated by both quasi-static numerical methods and measurements. Furthermore, the formula allows the investigation of the frequency dependence of the via-plate capacitance, which is not possible with quasi-static methods.

137 citations

Proceedings ArticleDOI
01 Jun 2008
TL;DR: In this article, particle swarm optimization (PSO) and DEPSO have been used for the design of linear phase finite impulse response (FIR) filters and two different fitness functions have been studied and experimented, each having its own significance.
Abstract: In this paper, swarm and evolutionary algorithms have been applied for the design of digital filters. Particle swarm optimization (PSO) and differential evolution particle swarm optimization (DEPSO) have been used here for the design of linear phase finite impulse response (FIR) filters. Two different fitness functions have been studied and experimented, each having its own significance. The first study considers a fitness function based on the passband and stopband ripple, while the second study considers a fitness function based on the mean squared error between the actual and the ideal filter response. DEPSO seems to be promising tool for FIR filter design especially in a dynamic environment where filter coefficients have to be adapted and fast convergence is of importance.

137 citations

Journal ArticleDOI
TL;DR: In this paper, a novel approach has been developed to numerically pack spheres in cylinders using a simple sequential technique that is based on a dimensionless packing parameter, which includes both axial and radial variables in order to determine a sphere's sequential placement within a cylindrical packing structure.

137 citations

Journal ArticleDOI
TL;DR: The thermo-physical properties of the CMWCNT nano-fluids are examined experimentally and indeed, this nano- fluid shows remarkably improved thermo -physical properties, indicating its superb potential for various thermal applications.

137 citations

Journal ArticleDOI
TL;DR: Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution, and bonding tests of the dry-deposited particles onto the current collector show thatthe bonding strength is greater than slurry-cast electrodes.
Abstract: Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.

137 citations


Authors

Showing all 9433 results

NameH-indexPapersCitations
Robert Stone1601756167901
Tobin J. Marks1591621111604
Jeffrey R. Long11842568415
Xiao-Ming Chen10859642229
Mark C. Hersam10765946813
Michael Schulz10075950719
Christopher J. Chang9830736101
Marco Cavaglia9337260157
Daniel W. Armstrong9375935819
Sajal K. Das85112429785
Ming-Liang Tong7936423537
Ludwig J. Gauckler7851725926
Rodolphe Clérac7850622604
David W. Fahey7731530176
Kai Wang7551922819
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Virginia Tech
95.2K papers, 2.9M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022162
20211,047
20201,180
20191,195
20181,108