scispace - formally typeset
Search or ask a question
Institution

Missouri University of Science and Technology

EducationRolla, Missouri, United States
About: Missouri University of Science and Technology is a education organization based out in Rolla, Missouri, United States. It is known for research contribution in the topics: Artificial neural network & Control theory. The organization has 9380 authors who have published 21161 publications receiving 462544 citations. The organization is also known as: Missouri S&T & University of Missouri–Rolla.


Papers
More filters
Journal ArticleDOI
TL;DR: A hybrid method based on ant colony optimization and artificial neural networks (ANNs) to address feature selection is presented, yielding promising results.
Abstract: One of the significant research problems in multivariate analysis is the selection of a subset of input variables that can predict the desired output with an acceptable level of accuracy. This goal is attained through the elimination of the variables that produce noise or, are strictly correlated with other already selected variables. Feature subset selection (selection of the input variables) is important in correlation analysis and in the field of classification and modeling. This paper presents a hybrid method based on ant colony optimization and artificial neural networks (ANNs) to address feature selection. The proposed hybrid model is demonstrated using data sets from the domain of medical diagnosis, yielding promising results.

256 citations

Journal ArticleDOI
TL;DR: In this paper, the structural behavior of reinforced concrete elements strengthened with near-surface mounted (NSM) fiber-reinforced polymer (FRP) rods is fully characterized, and bond is the first issue addressed.
Abstract: Use of near-surface mounted (NSM) fiber-reinforced polymer (FRP) rods is a promising technology for increasing flexural and shear strength of reinforced concrete (RC) members. As this technology emerges, the structural behavior of RC elements strengthened with NSM FRP rods should be fully characterized, and bond is the first issue to be addressed. Bond is of primary importance as it is the means for the transfer of stress between the concrete and the FRP reinforcement to develop composite action. This research program aimed to investigate bond between NSM FRP rods and concrete. Some of the factors expected to affect bond performance are addressed here, namely: bonded length, diameter and surface configuration of the rod, type of FRP material, and size of the groove in which the rod is embedded. Results are presented and discussed.

254 citations

Journal ArticleDOI
TL;DR: In this article, the effects of graphite nanoplatelets (GNPs) and carbon nanofibers (CNFs) on mechanical properties of ultra-high-performance concrete (UHPC) are investigated.
Abstract: Effects of graphite nanoplatelets (GNPs) and carbon nanofibers (CNFs) on mechanical properties of ultra-high-performance concrete (UHPC) are investigated. A non-proprietary UHPC mixture composed of 0.5% steel micro fibers, 5% silica fume, and 40% fly ash was used. The content of the nanomaterials ranged from 0 to 0.3% by weight of cementitious materials. The nanomaterials were dispersed using optimized surfactant content and ultra-sonification to ensure uniform dispersion in the UHPC mixture. As the content of nanomaterials is increased from 0 to 0.3%, the tensile strength and energy absorption capacity can be increased by 56% and 187%, respectively; the flexural strength and toughness can be increased by 59% and 276%, respectively. At 0.2% of GNPs, the UHPCs exhibited “strain-hardening” in tension and in flexure.

254 citations

Journal ArticleDOI
TL;DR: Antioxidants and advanced glycation end products inhibitors, either induced endogenously or exogenously introduced, may counteract with the deleterious effects of the reactive oxygen/reactive nitrogen species and thereby, in prevention or treatment paradigms, attenuate or substantially delay the onset of these devastating pathologies.
Abstract: Oxidative stress plays a major role in diabetes as well as in Alzheimer's disease and other related neurological diseases. Intracellular oxidative stress arises due to the imbalance in the production of reactive oxygen/reactive nitrogen species and cellular antioxidant defense mechanisms. In turn, the excess reactive oxygen/reactive nitrogen species mediate the damage of proteins and nucleic acids, which have been shown to have direct and deleterious consequences in diabetes and Alzheimer's disease. Oxidative stress also contributes to the production of advanced glycation end products through glycoxidation and lipid peroxidation. The advanced glycation end products and lipid peroxidation products are ubiquitous to diabetes and Alzheimer's disease and serve as markers of disease progression in both disorders. Antioxidants and advanced glycation end products inhibitors, either induced endogenously or exogenously introduced, may counteract with the deleterious effects of the reactive oxygen/reactive nitrogen species and thereby, in prevention or treatment paradigms, attenuate or substantially delay the onset of these devastating pathologies.

253 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed experimental investigation of LaFeAsO, the parent material in the series of ''FeAs'' based oxypnictide superconductors, is presented.
Abstract: We present results from a detailed experimental investigation of LaFeAsO, the parent material in the series of ``FeAs'' based oxypnictide superconductors. Upon cooling, this material undergoes a tetragonal-orthorhombic crystallographic phase transition at $\ensuremath{\sim}160\text{ }\text{K}$ followed closely by an antiferromagnetic ordering near 145 K. Analysis of these phase transitions using temperature dependent powder x-ray and neutron-diffraction measurements is presented. A magnetic moment of $\ensuremath{\sim}0.35{\ensuremath{\mu}}_{B}$ per iron is derived from M\"ossbauer spectra in the low-temperature phase. Evidence of the structural transition is observed at temperatures well above the transition temperature (up to near 200 K) in the diffraction data as well as the polycrystalline elastic moduli probed by resonant ultrasound spectroscopy measurements. The effects of the two phase transitions on the transport properties (resistivity, thermal conductivity, Seebeck coefficient, and Hall coefficient), heat capacity, and magnetization of LaFeAsO are also reported, including a dramatic increase in the magnitude of the Hall coefficient below 160 K. The results suggest that the structural distortion leads to a localization of carriers on Fe, producing small local magnetic moments which subsequently order antiferromagnetically upon further cooling. Evidence of strong electron-phonon interactions in the high-temperature tetragonal phase is also observed.

252 citations


Authors

Showing all 9433 results

NameH-indexPapersCitations
Robert Stone1601756167901
Tobin J. Marks1591621111604
Jeffrey R. Long11842568415
Xiao-Ming Chen10859642229
Mark C. Hersam10765946813
Michael Schulz10075950719
Christopher J. Chang9830736101
Marco Cavaglia9337260157
Daniel W. Armstrong9375935819
Sajal K. Das85112429785
Ming-Liang Tong7936423537
Ludwig J. Gauckler7851725926
Rodolphe Clérac7850622604
David W. Fahey7731530176
Kai Wang7551922819
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Virginia Tech
95.2K papers, 2.9M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022162
20211,047
20201,180
20191,195
20181,108