scispace - formally typeset
Search or ask a question
Institution

Research Triangle Park

NonprofitDurham, North Carolina, United States
About: Research Triangle Park is a nonprofit organization based out in Durham, North Carolina, United States. It is known for research contribution in the topics: Population & Receptor. The organization has 24961 authors who have published 35800 publications receiving 1684504 citations. The organization is also known as: RTP.


Papers
More filters
Journal ArticleDOI
TL;DR: The prevalence of fluorinated chemicals in fast food packaging demonstrates their potentially significant contribution to dietary PFAS exposure and environmental contamination during production and disposal.
Abstract: Per- and polyfluoroalkyl substances (PFASs) are highly persistent synthetic chemicals, some of which have been associated with cancer, developmental toxicity, immunotoxicity, and other health effects. PFASs in grease-resistant food packaging can leach into food and increase dietary exposure. We collected ∼400 samples of food contact papers, paperboard containers, and beverage containers from fast food restaurants throughout the United States and measured total fluorine using particle-induced γ-ray emission (PIGE) spectroscopy. PIGE can rapidly and inexpensively measure total fluorine in solid-phase samples. We found that 46% of food contact papers and 20% of paperboard samples contained detectable fluorine (>16 nmol/cm2). Liquid chromatography/high-resolution mass spectrometry analysis of a subset of 20 samples found perfluorocarboxylates, perfluorosulfonates, and other known PFASs and/or unidentified polyfluorinated compounds (based on nontargeted analysis). The total peak area for PFASs was higher in 70...

335 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared cell-free extracts from RER+ endometrial and colorectal cancer cell lines to RER- cell lines, and found that the defect in these lines likely involves pre-incision events or the excision step, but not the incision, polymerization, or ligation steps.

335 citations

Journal ArticleDOI
TL;DR: A novel role for p53 in DNA repair, which could contribute to its function as a key tumor suppressor and is supported by the facts that BER activity in human and murine cell extracts closely parallels their levels of endogenous p53, and that P53 activity is much reduced in cell extracts immunodepleted of p53.
Abstract: Wild‐type p53 protein can markedly stimulate base excision repair (BER) in vitro , either reconstituted with purified components or in extracts of cells. In contrast, p53 with missense mutations either at hot‐spots in the core domain or within the N‐terminal transactivation domain is defective in this function. Stimulation of BER by p53 is correlated with its ability to interact directly both with the AP endonuclease (APE) and with DNA polymerase β (pol β). Furthermore, p53 stabilizes the interaction between DNA pol β and abasic DNA. Evidence that this function of p53 is physiologically relevant is supported by the facts that BER activity in human and murine cell extracts closely parallels their levels of endogenous p53, and that BER activity is much reduced in cell extracts immunodepleted of p53. These data suggest a novel role for p53 in DNA repair, which could contribute to its function as a key tumor suppressor.

334 citations

Journal ArticleDOI
TL;DR: The roles of PPARs in growth promotion in rodent hepatocarcinogenesis and potential therapeutic effects, including suppression of cancer growth and inflammation are discussed.
Abstract: Peroxisome proliferators (PPs) are a large class of structurally dissimilar chemicals that have diverse effects in rodents and humans. Most, if not all, of the diverse effects of PPs are mediated by three members of the nuclear receptor superfamily called peroxisome proliferator-activated receptors (PPARs). In this review, we define the molecular mechanisms of PPs, including PPAR binding specificity, alteration of gene expression through binding to DNA response elements, and cross talk with other signaling pathways. We discuss the roles of PPARs in growth promotion in rodent hepatocarcinogenesis and potential therapeutic effects, including suppression of cancer growth and inflammation.

334 citations


Authors

Showing all 25006 results

NameH-indexPapersCitations
Douglas G. Altman2531001680344
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Daniel J. Jacob16265676530
Christopher P. Cannon1511118108906
James B. Meigs147574115899
Lawrence Corey14677378105
Jeremy K. Nicholson14177380275
Paul M. Matthews14061788802
Herbert Y. Meltzer137114881371
Charles J. Yeo13667276424
Benjamin F. Cravatt13166661932
Timothy R. Billiar13183866133
Peter Brown12990868853
King K. Holmes12460656192
Network Information
Related Institutions (5)
University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

90% related

University of Minnesota
257.9K papers, 11.9M citations

89% related

University of Washington
305.5K papers, 17.7M citations

89% related

University of Pittsburgh
201K papers, 9.6M citations

89% related

National Institutes of Health
297.8K papers, 21.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202277
2021988
20201,001
20191,035
20181,051