scispace - formally typeset
Search or ask a question
Institution

Research Triangle Park

NonprofitDurham, North Carolina, United States
About: Research Triangle Park is a nonprofit organization based out in Durham, North Carolina, United States. It is known for research contribution in the topics: Population & Receptor. The organization has 24961 authors who have published 35800 publications receiving 1684504 citations. The organization is also known as: RTP.


Papers
More filters
Journal ArticleDOI
TL;DR: Overexpressed a gene encoding a rice trehalose-6-phosphate phosphatase (TPP) in developing maize ears using a floral promoter and showed that the engineered trait improved yields from 9% to 49% under non-drought or mild drought conditions, and from 31% to 123% under more severe drought Conditions, relative to yields from nontransgenic controls.
Abstract: Maize, the highest-yielding cereal crop worldwide, is particularly susceptible to drought during its 2- to 3-week flowering period. Many genetic engineering strategies for drought tolerance impinge on plant development, reduce maximum yield potential or do not translate from laboratory conditions to the field. We overexpressed a gene encoding a rice trehalose-6-phosphate phosphatase (TPP) in developing maize ears using a floral promoter. This reduced the concentration of trehalose-6-phosphate (T6P), a sugar signal that regulates growth and development, and increased the concentration of sucrose in ear spikelets. Overexpression of TPP increased both kernel set and harvest index. Field data at several sites and over multiple seasons showed that the engineered trait improved yields from 9% to 49% under non-drought or mild drought conditions, and from 31% to 123% under more severe drought conditions, relative to yields from nontransgenic controls.

312 citations

Journal ArticleDOI
TL;DR: Successful strategies to reduce infections among V LBW infants would improve survival, reduce neonatal morbidity, and reduce the high medical and social costs of VLBW infant care.

312 citations

Journal ArticleDOI
TL;DR: Increased understanding of the mechanism of dioxin's effects as well as elucidation of exposure-dose relationships is leading to the development of a biologically based dose-response model in the ongoing process of incorporating the best science into the risk assessment of TCDD and related compounds.
Abstract: Risk characterization involves hazard identification, determination of dose-response relationships, and exposure assessment. Improvement of the risk assessment process requires inclusion of the best available science. Recent findings in the area of dioxin toxicity have led to a major effort to reassess its risk. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), commonly referred to as "dioxin," is the most toxic member of a class of related chemicals including the polyhalogenated dibenzo-p-dioxins, dibenzofurans, biphenyls, naphthalenes, azo- and azoxy-benzenes, whose toxicities can be expressed as fractional equivalencies of TCDD. These chemicals exert their effects through interaction with a specific intracellular protein, the Ah receptor. While binding to the receptor is necessary, it is not sufficient to bring about a chain of events leading to various responses including enzyme induction, immunotoxicity, reproductive and endocrine effects, developmental toxicity, chloracne, tumor promotion, etc. Some of these responses appear to be linear at low doses. Immunotoxicity and effects on the reproductive system appear to be among the most sensitive responses. The Ah receptor functions as a transcriptional enhancer, interacting with a number of other regulatory proteins (heat shock proteins, kinases, translocases, DNA binding species). Interaction with specific base sequences in the DNA appear to be modulated by the presence of other growth factors, hormones and their receptors as well as other regulatory proteins. Thus, dioxin appears to function as a hormone, initiating a cascade of events that is dependent upon the environment of each cell and tissue. While Ah receptor variants exist, all vertebrates examined have demonstrated such a protein with similar numbers of receptors and binding affinity for TCDD. Most species respond similarly to dioxin and related compounds. While a given species may be an outlier for a given response, it will behave like other animals for other responses. For both in vivo and in vitro end points where animal and human data exist, such as enzyme induction, chloracne, immunotoxicity, developmental toxicity, and cancer, the sensitivity of humans appears similar to that of experimental animals. Current levels of environmental exposure to this class of chemicals may be resulting in subtle responses in populations at special risk such as subsistence fisherman and the developing infant, as well as in the general population. Increased understanding of the mechanism of dioxin's effects as well as elucidation of exposure-dose relationships is leading to the development of a biologically based dose-response model in the ongoing process of incorporating the best science into the risk assessment of TCDD and related compounds.

312 citations

Journal ArticleDOI
TL;DR: Assessment of the impact of menopausal symptoms on health-related quality of life in a large US population-based study found treatments that safely and effectively treat these symptoms could improve quality oflife among postmenopausal women.

311 citations

Journal ArticleDOI
TL;DR: The peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate glucose and lipid homeostasis as mentioned in this paper and play a central role in the regulation of adipogenesis and is the molecular target for the 2,4-thiazolidinedione class of antidiabetic drugs.
Abstract: The peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate glucose and lipid homeostasis. The PPARγ subtype plays a central role in the regulation of adipogenesis and is the molecular target for the 2,4-thiazolidinedione class of antidiabetic drugs. Structural studies have revealed that agonist ligands activate the PPARs through direct interactions with the C-terminal region of the ligand-binding domain, which includes the activation function 2 helix. GW0072 was identified as a high-affinity PPARγ ligand that was a weak partial agonist of PPARγ transactivation. X-ray crystallography revealed that GW0072 occupied the ligand-binding pocket by using different epitopes than the known PPAR agonists and did not interact with the activation function 2 helix. In cell culture, GW0072 was a potent antagonist of adipocyte differentiation. These results establish an approach to the design of PPAR ligands with modified biological activities.

311 citations


Authors

Showing all 25006 results

NameH-indexPapersCitations
Douglas G. Altman2531001680344
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Daniel J. Jacob16265676530
Christopher P. Cannon1511118108906
James B. Meigs147574115899
Lawrence Corey14677378105
Jeremy K. Nicholson14177380275
Paul M. Matthews14061788802
Herbert Y. Meltzer137114881371
Charles J. Yeo13667276424
Benjamin F. Cravatt13166661932
Timothy R. Billiar13183866133
Peter Brown12990868853
King K. Holmes12460656192
Network Information
Related Institutions (5)
University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

90% related

University of Minnesota
257.9K papers, 11.9M citations

89% related

University of Washington
305.5K papers, 17.7M citations

89% related

University of Pittsburgh
201K papers, 9.6M citations

89% related

National Institutes of Health
297.8K papers, 21.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202277
2021988
20201,001
20191,035
20181,051