scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Barbara

EducationSanta Barbara, California, United States
About: University of California, Santa Barbara is a education organization based out in Santa Barbara, California, United States. It is known for research contribution in the topics: Population & Laser. The organization has 30281 authors who have published 80852 publications receiving 4626827 citations. The organization is also known as: UC Santa Barbara & UCSB.


Papers
More filters
Journal ArticleDOI
TL;DR: The Sexual Experiences Questionnaire (SEQ) as mentioned in this paper ) is a questionnaire designed for working women to identify sexual harassment of women workers and students at two large public universities and reported the results for a large sample of academic, professional and semiprofessional and blue-collar women.

778 citations

Journal ArticleDOI
TL;DR: It is shown that there is evidence that parasites are important for biodiversity and production and a healthy system is considered to be one that is rich in parasite species.
Abstract: Historically, the role of parasites in ecosystem functioning has been considered trivial because a cursory examination reveals that their relative biomass is low compared with that of other trophic groups. However there is increasing evidence that parasite-mediated effects could be significant: they shape host population dynamics, alter interspecific competition, influence energy flow and appear to be important drivers of biodiversity. Indeed they influence a range of ecosystem functions and have a major effect on the structure of some food webs. Here, we consider the bottom-up and top-down processes of how parasitism influences ecosystem functioning and show that there is evidence that parasites are important for biodiversity and production; thus, we consider a healthy system to be one that is rich in parasite species.

777 citations

Journal ArticleDOI
TL;DR: In this article, the authors published a paper entitled "Oceanography 22 no. 4 (2009): 202-211", which was the first publication of the Oceanography 22 journal.
Abstract: Author Posting. © Oceanography Society, 2009. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 22 no. 4 (2009): 202-211.

776 citations

Journal ArticleDOI
23 May 2002-Nature
TL;DR: Diblock copolypeptide amphiphiles containing charged and hydrophobic segments are synthesized and shape-specific supramolecular assembly is integral to the gelation process, and provides a new class of peptide-based hydrogels with potential for applications in biotechnology.
Abstract: Protein-based hydrogels are used for many applications, ranging from food and cosmetic thickeners to support matrices for drug delivery and tissue replacement. These materials are usually prepared using proteins extracted from natural sources, which can give rise to inconsistent properties unsuitable for medical applications. Recent developments have utilized recombinant DNA methods to prepare artificial protein hydrogels with specific association mechanisms and responsiveness to various stimuli. Here we synthesize diblock copolypeptide amphiphiles containing charged and hydrophobic segments. Dilute solutions of these copolypeptides would be expected to form micelles; instead, they form hydrogels that retain their mechanical strength up to temperatures of about 90 degrees C and recover rapidly after stress. The use of synthetic materials permits adjustment of copolymer chain length and composition, which we varied to study their effect on hydrogel formation and properties. We find that gelation depends not only on the amphiphilic nature of the polypeptides, but also on chain conformations--alpha-helix, beta-strand or random coil. Indeed, shape-specific supramolecular assembly is integral to the gelation process, and provides a new class of peptide-based hydrogels with potential for applications in biotechnology.

776 citations

Journal ArticleDOI
27 Sep 1996-Science
TL;DR: Gain narrowing in optically pumped thin films, both neat and undiluted, of luminescent conjugated polymers with different molecular structures was demonstrated in this paper, showing that the polymers studied have large cross sections for stimulated emission, that population inversion can be achieved at low pump energies, and that the emitted photons travel distances greater than the gain length within the gain medium.
Abstract: Gain narrowing in optically pumped thin films, both neat and undiluted, of luminescent conjugated polymers with different molecular structures was demonstrated. These results indicate that the polymers studied have large cross sections for stimulated emission, that population inversion can be achieved at low pump energies, and that the emitted photons travel distances greater than the gain length within the gain medium. The use of simple waveguide structures is sufficient to cause low gain narrowing thresholds in submicrometer-thick films.

775 citations


Authors

Showing all 30652 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Chen2174342293080
Simon D. M. White189795231645
George Efstathiou187637156228
Peidong Yang183562144351
David R. Williams1782034138789
Alan J. Heeger171913147492
Richard H. Friend1691182140032
Jiawei Han1681233143427
Gang Chen1673372149819
Alexander S. Szalay166936145745
Omar M. Yaghi165459163918
Carlos S. Frenk165799140345
Yang Yang1642704144071
Carlos Bustamante161770106053
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

Princeton University
146.7K papers, 9.1M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023150
2022528
20213,352
20203,653
20193,516