scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Barbara

EducationSanta Barbara, California, United States
About: University of California, Santa Barbara is a education organization based out in Santa Barbara, California, United States. It is known for research contribution in the topics: Population & Laser. The organization has 30281 authors who have published 80852 publications receiving 4626827 citations. The organization is also known as: UC Santa Barbara & UCSB.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a technique for describing the global behaviour of complex nonlinear flows by decomposing the flow into modes determined from spectral analysis of the Koopman operator, an infinite-dimensional linear operator associated with the full nonlinear system, is presented.
Abstract: We present a technique for describing the global behaviour of complex nonlinear flows by decomposing the flow into modes determined from spectral analysis of the Koopman operator, an infinite-dimensional linear operator associated with the full nonlinear system. These modes, referred to as Koopman modes, are associated with a particular observable, and may be determined directly from data (either numerical or experimental) using a variant of a standard Arnoldi method. They have an associated temporal frequency and growth rate and may be viewed as a nonlinear generalization of global eigenmodes of a linearized system. They provide an alternative to proper orthogonal decomposition, and in the case of periodic data the Koopman modes reduce to a discrete temporal Fourier transform. The Arnoldi method used for computations is identical to the dynamic mode decomposition recently proposed by Schmid & Sesterhenn (Sixty-First Annual Meeting of the APS Division of Fluid Dynamics, 2008), so dynamic mode decomposition can be thought of as an algorithm for finding Koopman modes. We illustrate the method on an example of a jet in crossflow, and show that the method captures the dominant frequencies and elucidates the associated spatial structures.

1,591 citations

Journal ArticleDOI
TL;DR: A cross-cultural study of behavior in ultimatum, public goods, and dictator games in a range of small-scale societies exhibiting a wide variety of economic and cultural conditions found the canonical model – based on self-interest – fails in all of the societies studied.
Abstract: Researchers from across the social sciences have found consistent deviations from the predictions of the canonical model of self-interest in hundreds of experiments from around the world. This research, however, cannot determine whether the uniformity re- sults from universal patterns of human behavior or from the limited cultural variation available among the university students used in virtually all prior experimental work. To address this, we undertook a cross-cultural study of behavior in ultimatum, public goods, and dictator games in a range of small-scale societies exhibiting a wide variety of economic and cultural conditions. We found, first, that the canonical model - based on self-interest - fails in all of the societies studied. Second, our data reveal substantially more behavioral vari- ability across social groups than has been found in previous research. Third, group-level differences in economic organization and the structure of social interactions explain a substantial portion of the behavioral variation across societies: the higher the degree of market integration and the higher the payoffs to cooperation in everyday life, the greater the level of prosociality expressed in experimental games. Fourth, the available individual-level economic and demographic variables do not consistently explain game behavior, either within or across groups. Fifth, in many cases experimental play appears to reflect the common interactional patterns of everyday life.

1,589 citations

Journal ArticleDOI
01 Aug 2011
TL;DR: Under the meta path framework, a novel similarity measure called PathSim is defined that is able to find peer objects in the network (e.g., find authors in the similar field and with similar reputation), which turns out to be more meaningful in many scenarios compared with random-walk based similarity measures.
Abstract: Similarity search is a primitive operation in database and Web search engines. With the advent of large-scale heterogeneous information networks that consist of multi-typed, interconnected objects, such as the bibliographic networks and social media networks, it is important to study similarity search in such networks. Intuitively, two objects are similar if they are linked by many paths in the network. However, most existing similarity measures are defined for homogeneous networks. Different semantic meanings behind paths are not taken into consideration. Thus they cannot be directly applied to heterogeneous networks.In this paper, we study similarity search that is defined among the same type of objects in heterogeneous networks. Moreover, by considering different linkage paths in a network, one could derive various similarity semantics. Therefore, we introduce the concept of meta path-based similarity, where a meta path is a path consisting of a sequence of relations defined between different object types (i.e., structural paths at the meta level). No matter whether a user would like to explicitly specify a path combination given sufficient domain knowledge, or choose the best path by experimental trials, or simply provide training examples to learn it, meta path forms a common base for a network-based similarity search engine. In particular, under the meta path framework we define a novel similarity measure called PathSim that is able to find peer objects in the network (e.g., find authors in the similar field and with similar reputation), which turns out to be more meaningful in many scenarios compared with random-walk based similarity measures. In order to support fast online query processing for PathSim queries, we develop an efficient solution that partially materializes short meta paths and then concatenates them online to compute top-k results. Experiments on real data sets demonstrate the effectiveness and efficiency of our proposed paradigm.

1,583 citations

Journal ArticleDOI
25 Sep 2009-Science
TL;DR: This work demonstrates polymer photodetectors with broad spectral response fabricated by using a small-band-gap semiconducting polymer blended with a fullerene derivative that can exceed the response of an inorganic semiconductor detector at liquid helium temperature.
Abstract: Sensing from the ultraviolet-visible to the infrared is critical for a variety of industrial and scientific applications. Today, gallium nitride-, silicon-, and indium gallium arsenide--based detectors are used for different sub-bands within the ultraviolet to near-infrared wavelength range. We demonstrate polymer photodetectors with broad spectral response (300 to 1450 nanometers) fabricated by using a small-band-gap semiconducting polymer blended with a fullerene derivative. Operating at room temperature, the polymer photodetectors exhibit detectivities greater than 10(12) cm Hz(1/2)/W and a linear dynamic range over 100 decibels. The self-assembled nanomorphology and device architecture result in high photodetectivity over this wide spectral range and reduce the dark current (and noise) to values well below dark currents obtained in narrow-band photodetectors made with inorganic semiconductors.

1,580 citations

Journal ArticleDOI
TL;DR: Using 1,8-diiodooctane as the processing additive, the efficiency of the BHJ solar cells was improved and the efficiency rating was improved from 3.4% (for the reference device) to 5.1%.
Abstract: Two criteria for processing additives introduced to control the morphology of bulk heterojunction (BHJ) materials for use in solar cells have been identified: (i) selective (differential) solubility of the fullerene component and (ii) higher boiling point than the host solvent. Using these criteria, we have investigated the class of 1,8-di(R)octanes with various functional groups (R) as processing additives for BHJ solar cells. Control of the BHJ morphology by selective solubility of the fullerene component is demonstrated using these high boiling point processing additives. The best results are obtained with R = Iodine (I). Using 1,8-diiodooctane as the processing additive, the efficiency of the BHJ solar cells was improved from 3.4% (for the reference device) to 5.1%.

1,579 citations


Authors

Showing all 30652 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Chen2174342293080
Simon D. M. White189795231645
George Efstathiou187637156228
Peidong Yang183562144351
David R. Williams1782034138789
Alan J. Heeger171913147492
Richard H. Friend1691182140032
Jiawei Han1681233143427
Gang Chen1673372149819
Alexander S. Szalay166936145745
Omar M. Yaghi165459163918
Carlos S. Frenk165799140345
Yang Yang1642704144071
Carlos Bustamante161770106053
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

Princeton University
146.7K papers, 9.1M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023150
2022528
20213,352
20203,653
20193,516