scispace - formally typeset
Search or ask a question
Institution

University of Paderborn

EducationPaderborn, Nordrhein-Westfalen, Germany
About: University of Paderborn is a education organization based out in Paderborn, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Computer science & Context (language use). The organization has 6684 authors who have published 16929 publications receiving 323154 citations.


Papers
More filters
Book ChapterDOI
TL;DR: The semantics of the OCL extension are given by employing time-bounded Computational Tree Logic formulae and an example of a flexible manufacturing system with automated guided vehicles demonstrates the application of the extension.
Abstract: The Object Constraint Language (OCL) was introduced to support the specification of constraints for UML diagrams and is mainly used to formulate invariants and operation pre- and postconditions. Though OCL is also applied in behavioral diagrams, e.g., as guards for state transitions, it is currently not possible to specify constraints concerning the dynamic behavior and timing properties of such diagrams.This article discusses OCL's application for the dynamic behavior of UML Statechart diagrams and presents an OCL extension for specification of state-oriented time-bounded constraints. We introduce operations to extract state configurations from diagrams and define additional predicates over states and state configurations. The semantics of our OCL extension is given by employing time-bounded Computational Tree Logic (CTL) formulae. An example of a flexible manufacturing system with automated guided vehicles demonstrates the application of our extension.

77 citations

Proceedings ArticleDOI
05 May 2014
TL;DR: The weighted voter model is presented which implements a self-organized collective decision making process with minimum requirements to guarantee consensus on the optimal decision, a minimum swarm size to guarantee a certain accuracy, and it is shown that the proposed approach scales with system size and is robust to noise.
Abstract: Collective decision making in self-organized systems is challenging because it relies on local perception and local communication. Globally defined qualities such as consensus time and decision accuracy are both difficult to predict and difficult to guarantee. We present the weighted voter model which implements a self-organized collective decision making process. We provide an ODE model, a master equation model (numerically solved by the Gillespie algorithm), and agent-based simulations of the proposed decision-making strategy. This set of models enables us to investigate the system behavior in the thermodynamic limit and to investigate finite-size effects due to random fluctuations. Based on our results, we give minimum requirements to guarantee consensus on the optimal decision, a minimum swarm size to guarantee a certain accuracy, and we show that the proposed approach scales with system size and is robust to noise.

77 citations

Journal ArticleDOI
TL;DR: An in-depth comparison and quantitative evaluation of representative model transformations to queueing petri nets and layered queueing networks helps software architects and performance engineers to select the appropriate transformation for a given context, thus significantly improving the usability of model transformations for performance prediction.
Abstract: During the last decade, researchers have proposed a number of model transformations enabling performance predictions. These transformations map performance-annotated software architecture models into stochastic models solved by analytical means or by simulation. However, so far, a detailed quantitative evaluation of the accuracy and efficiency of different transformations is missing, making it hard to select an adequate transformation for a given context. This paper provides an in-depth comparison and quantitative evaluation of representative model transformations to, e.g., queueing petri nets and layered queueing networks. The semantic gaps between typical source model abstractions and the different analysis techniques are revealed. The accuracy and efficiency of each transformation are evaluated by considering four case studies representing systems of different size and complexity. The presented results and insights gained from the evaluation help software architects and performance engineers to select the appropriate transformation for a given context, thus significantly improving the usability of model transformations for performance prediction.

77 citations

Journal ArticleDOI
TL;DR: In this article, a two-layer plasmonic metasurface design is proposed for non-reciprocal polarization encryption of holographic images, where the encoded hologram is designed to appear in a particular linear cross-polarization channel, while it is disappearing in the reverse propagation direction.
Abstract: As flexible optical devices that can manipulate the phase and amplitude of light, metasurfaces would clearly benefit from directional optical properties. However, single layer metasurface systems consisting of two-dimensional nanoparticle arrays exhibit only a weak spatial asymmetry perpendicular to the surface and therefore have mostly symmetric transmission features. Here, we present a metasurface design principle for nonreciprocal polarization encryption of holographic images. Our approach is based on a two-layer plasmonic metasurface design that introduces a local asymmetry and generates a bidirectional functionality with full phase and amplitude control of the transmitted light. The encoded hologram is designed to appear in a particular linear cross-polarization channel, while it is disappearing in the reverse propagation direction. Hence, layered metasurface systems can feature asymmetric transmission with full phase and amplitude control and therefore expand the design freedom in nanoscale optical devices toward asymmetric information processing and security features for anticounterfeiting applications.

77 citations

Journal ArticleDOI
TL;DR: In this article, optical, alignment and electro-optic properties of a nematic liquid crystal affected by the presence of semiconductor CdSe magic-sized nanocrystals (MSNCs) were reported.
Abstract: We here report on the optical, alignment and electro-optic properties of a nematic liquid crystal affected by the presence of semiconductor CdSe magic-sized nanocrystals (MSNCs). Three single-sized CdSe samples were tested, exhibiting bright bandgap photoluminescence (PL) with λmax ≈ 463 nm and ∼10 nm full width at half-maximum (fwhm). The three quantum dot (QD) samples were passivated with a monolayer of myristic acid. Two of them (QD1 and QD2) only vary in the amount of defects as indicated by different bandgap and deep trap PL. The third MSNC sample (QD3) is compositionally different, doped with Zn. These MSNCs with almost identical sizes were doped at different concentrations (1–5 wt%) into the nematic phase of 5-n-heptyl-2-(4-n-octyloxyphenyl)-pyrimidine (LC1). Only QD3 showed the formation of birefringent stripes surrounded by areas of homeotropic alignment between plain glass slides at all concentrations as observed for many other nanoparticle-doped nematic liquid crystals reported earlier by our group. In polyimide-coated glass slides favouring planar orientation of the nematic director, planar alignment was observed. Surprisingly, only the Zn-doped magic-sized QD3quantum dots (CdSe@Zn) significantly lower the dielectric anisotropy as well as the splay elastic constant of the nematic host, despite identical size and surface functionality, which highlights the tremendous effect of the nanocrystal core composition on the electro-optic properties of the nematic host. In addition, fluorescence confocal (polarizing) microscopy studies show the director field within and around the birefringent stripes and confirm locally elevated concentrations or aggregates of the MCNC that are otherwise randomly distributed in the nematic host.

77 citations


Authors

Showing all 6872 results

NameH-indexPapersCitations
Martin Karplus163831138492
Marco Dorigo10565791418
Robert W. Boyd98116137321
Thomas Heine8442324210
Satoru Miyano8481138723
Wen-Xiu Ma8342020702
Jörg Neugebauer8149130909
Thomas Lengauer8047734430
Gotthard Seifert8044526136
Reshef Tenne7452924717
Tim Meyer7454824784
Qiang Cui7129220655
Thomas Frauenheim7045117887
Walter Richtering6733214866
Marcus Elstner6720918960
Network Information
Related Institutions (5)
Eindhoven University of Technology
52.9K papers, 1.5M citations

95% related

Royal Institute of Technology
68.4K papers, 1.9M citations

93% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023131
2022242
20211,030
20201,010
2019948
2018967