scispace - formally typeset
Search or ask a question
Institution

University of Paderborn

EducationPaderborn, Nordrhein-Westfalen, Germany
About: University of Paderborn is a education organization based out in Paderborn, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Computer science & Context (language use). The organization has 6684 authors who have published 16929 publications receiving 323154 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A numerical method is presented to prove certain statements about the global dynamics of infinite-dimensional maps and the existence of period points, connecting orbits, and chaotic dynamics in the Kot--Schaffer growth-dispersal model for plants.
Abstract: We present a numerical method to prove certain statements about the global dynamics of infinite-dimensional maps. The method combines set-oriented numerical tools for the computation of invariant sets and isolating neighborhoods, the Conley index theory, and analytic considerations. It not only allows for the detection of a certain dynamical behavior, but also for a precise computation of the corresponding invariant sets in phase space. As an example computation we show the existence of period points, connecting orbits, and chaotic dynamics in the Kot--Schaffer growth-dispersal model for plants.

71 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid quantum mechanical and molecular mechanical approach has been developed and used to study the aqueous solvation effect on biological systems, and very good agreement with the ab initio results has been achieved.
Abstract: A hybrid quantum mechanical (QM) and molecular mechanical (MM) approach has been developed and used to study the aqueous solvation effect on biological systems. The self-consistent charge density functional tight-binding (SCC-DFTB) method is employed to perform the quantum mechanical calculations in the QM part, while the AMBER 4.1 force field is used to perform the molecular mechanical calculations in the MM part. The coupling terms between these two parts include electrostatic and van der Waal's interactions. As a test of feasibility, this approach has been first applied to some small systems H-bonded with water molecule(s), and very good agreement with the ab initio results has been achieved. The hybrid potential was then used to investigate the solvation effect on the capped (L-Ala)n helices with n=4, 5, 8 and 11. (L-Ala)n was treated with the SCC-DFTB method and the water molecules with the TIP3P water model. It has been shown that, in gas phase, the α helices of (L-Ala)n are less stable than the corresponding 310 helices. In water solution, however, the α helices are stabilized and, compared with 310 helices, the α helices have stronger charge–charge interactions with the surrounding water molecules. This may be explained by the larger dipole moment of α helices in aqueous solution, which will influence and organize the orientations of the surrounding water molecules. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 459–479, 2000

71 citations

Journal ArticleDOI
TL;DR: The results demonstrate for the first time the close interplay between the number of NHC functionalities in Fe(II) complexes and their photochemical properties, as revealed in a comparison of the activity as photosensitizers in photocatalytic proton reduction.
Abstract: Four homo- and heteroleptic complexes bearing both polypyridyl units and N-heterocyclic carbene (NHC) donor functions are studied as potential noble metal-free photosensitizers. The complexes [FeII(L1)(terpy)][PF6]2, [FeII(L2)2][PF6]2, [FeII(L1)(L3)][PF6]2, and [FeII(L3)2][PF6]2 (terpy = 2,2':6',2″ terpyridine, L1 = 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine, L2 = 2,6-bis[3-isopropylimidazol-2-ylidene]pyridine, L3 = 1-(2,2'-bipyridyl)-3-methylimidazol-2-ylidene) contain tridentate ligands of the C^N^C and N^N^C type, respectively, resulting in a Fe-NHC number between two and four. Thorough ground state characterization by single crystal diffraction, electrochemistry, valence-to-core X-ray emission spectroscopy (VtC-XES), and high energy resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) in combination with ab initio calculations show a correlation between the geometric and electronic structure of these new compounds and the number of the NHC donor functions. These results serve as a basis for the investigation of the excited states by ultrafast transient absorption spectroscopy, where the lifetime of the 3MLCT states is found to increase with the NHC donor count. The results demonstrate for the first time the close interplay between the number of NHC functionalities in Fe(II) complexes and their photochemical properties, as revealed in a comparison of the activity as photosensitizers in photocatalytic proton reduction.

71 citations

Journal ArticleDOI
TL;DR: In this article, detailed results of 3D finite element (FE) and mixed mode analyses of different fracture specimens are presented and discussed, where 3D and mode coupling effects are found in strain energy release rate (SERR) results along crack fronts, in particular adjacent to corners, where a crack front intersects a free surface of a specimen.

71 citations

Journal ArticleDOI
TL;DR: New phenazines were synthesized by oxygenation of 1- and 2-naphthol with transition metal peroxo complexes and in situ reaction with 1,2-diamines and were most prominent in growth inhibition and in vivo protection against cerebral malaria.
Abstract: New phenazines were synthesized by oxygenation of 1- and 2-naphthol with transition metal peroxo complexes and in situ reaction with 1,2-diamines. The title compounds were evaluated for in vitro antimalarial activity against Plasmodium falciparum and chloroquine-resistant strains. Phenazines 12, 27, and 28 were most prominent in growth inhibition. In vivo protection against cerebral malaria was observed with the phenazines 11, 12, 20, and 27, whereas partial protection was provided by 19.

71 citations


Authors

Showing all 6872 results

NameH-indexPapersCitations
Martin Karplus163831138492
Marco Dorigo10565791418
Robert W. Boyd98116137321
Thomas Heine8442324210
Satoru Miyano8481138723
Wen-Xiu Ma8342020702
Jörg Neugebauer8149130909
Thomas Lengauer8047734430
Gotthard Seifert8044526136
Reshef Tenne7452924717
Tim Meyer7454824784
Qiang Cui7129220655
Thomas Frauenheim7045117887
Walter Richtering6733214866
Marcus Elstner6720918960
Network Information
Related Institutions (5)
Eindhoven University of Technology
52.9K papers, 1.5M citations

95% related

Royal Institute of Technology
68.4K papers, 1.9M citations

93% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023131
2022242
20211,030
20201,010
2019948
2018967