scispace - formally typeset
Search or ask a question
Institution

Utrecht University

EducationUtrecht, Utrecht, Netherlands
About: Utrecht University is a education organization based out in Utrecht, Utrecht, Netherlands. It is known for research contribution in the topics: Population & Context (language use). The organization has 58176 authors who have published 139351 publications receiving 6214282 citations. The organization is also known as: UU & Universiteit Utrecht.


Papers
More filters
Journal ArticleDOI
TL;DR: In virtually all medical domains, diagnostic and prognostic multivariable prediction models are being developed, validated, updated, and implemented with the aim to assist doctors and individuals in estimating probabilities and potentially influence their decision making.
Abstract: The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) Statement includes a 22-item checklist, which aims to improve the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. This explanation and elaboration document describes the rationale; clarifies the meaning of each item; and discusses why transparent reporting is important, with a view to assessing risk of bias and clinical usefulness of the prediction model. Each checklist item of the TRIPOD Statement is explained in detail and accompanied by published examples of good reporting. The document also provides a valuable reference of issues to consider when designing, conducting, and analyzing prediction model studies. To aid the editorial process and help peer reviewers and, ultimately, readers and systematic reviewers of prediction model studies, it is recommended that authors include a completed checklist in their submission. The TRIPOD checklist can also be downloaded from www.tripod-statement.org.

2,982 citations

Journal ArticleDOI
TL;DR: It is demonstrated by immunoelectron microscopy that the limiting membrane of MIICs can fuse directly with the plasma membrane, resulting in release from the cells of internal MHC class II-containing vesicles, suggesting a role for exosomes in antigen presentation in vivo.
Abstract: Antigen-presenting cells contain a specialized late endocytic compartment, MIIC (major histocompatibility complex [MHC] class II-enriched compartment), that harbors newly synthesized MHC class II molecules in transit to the plasma membrane. MIICs have a limiting membrane enclosing characteristic internal membrane vesicles. Both the limiting membrane and the internal vesicles contain MHC class II. In this study on B lymphoblastoid cells, we demonstrate by immunoelectron microscopy that the limiting membrane of MIICs can fuse directly with the plasma membrane, resulting in release from the cells of internal MHC class II-containing vesicles. These secreted vesicles, named exosomes, were isolated from the cell culture media by differential centrifugation followed by flotation on sucrose density gradients. The overall surface protein composition of exosomes differed significantly from that of the plasma membrane. Exosome-bound MHC class II was in a compact, peptide-bound conformation. Metabolically labeled MHC class II was released into the extracellular medium with relatively slow kinetics, 10 +/- 4% in 24 h, indicating that direct fusion of MIICs with the plasma membrane is not the major pathway by which MHC class II reaches the plasma membrane. Exosomes derived from both human and murine B lymphocytes induced antigen-specific MHC class II-restricted T cell responses. These data suggest a role for exosomes in antigen presentation in vivo.

2,978 citations

Journal ArticleDOI
TL;DR: In this paper, a simulation study is used to determine the influence of different sample sizes at the group level on the accuracy of the estimates (regression coefficients and variances) and their standard errors.
Abstract: An important problem in multilevel modeling is what constitutes a sufficient sample size for accurate estimation. In multilevel analysis, the major restriction is often the higher-level sample size. In this paper, a simulation study is used to determine the influence of different sample sizes at the group level on the accuracy of the estimates (regression coefficients and variances) and their standard errors. In addition, the influence of other factors, such as the lowest-level sample size and different variance distributions between the levels (different intraclass correlations), is examined. The results show that only a small sample size at level two (meaning a sample of 50 or less) leads to biased estimates of the second-level standard errors. In all of the other simulated conditions the estimates of the regression coefficients, the variance components, and the standard errors are unbiased and accurate.

2,931 citations

Journal ArticleDOI
Jeffrey D. Stanaway1, Ashkan Afshin1, Emmanuela Gakidou1, Stephen S Lim1  +1050 moreInstitutions (346)
TL;DR: This study estimated levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs) by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017 and explored the relationship between development and risk exposure.

2,910 citations

Journal ArticleDOI
TL;DR: It is proposed that temperament can and should be studied within an evolutionary ecology framework and provided a terminology that could be used as a working tool for ecological studies of temperament, which includes five major temperament trait categories: shyness‐boldness, exploration‐avoidance, activity, sociability and aggressiveness.
Abstract: Temperament describes the idea that individual behavioural differences are repeatable over time and across situations. This common phenomenon covers numerous traits, such as aggressiveness, avoidance of novelty, willingness to take risks, exploration, and sociality. The study of temperament is central to animal psychology, behavioural genetics, pharmacology, and animal husbandry, but relatively few studies have examined the ecology and evolution of temperament traits. This situation is surprising, given that temperament is likely to exert an important influence on many aspects of animal ecology and evolution, and that individual variation in temperament appears to be pervasive amongst animal species. Possible explanations for this neglect of temperament include a perceived irrelevance, an insufficient understanding of the link between temperament traits and fitness, and a lack of coherence in terminology with similar traits often given different names, or different traits given the same name. We propose that temperament can and should be studied within an evolutionary ecology framework and provide a terminology that could be used as a working tool for ecological studies of temperament. Our terminology includes five major temperament trait categories: shyness-boldness, exploration-avoidance, activity, sociability and aggressiveness. This terminology does not make inferences regarding underlying dispositions or psychological processes, which may have restrained ecologists and evolutionary biologists from working on these traits. We present extensive literature reviews that demonstrate that temperament traits are heritable, and linked to fitness and to several other traits of importance to ecology and evolution. Furthermore, we describe ecologically relevant measurement methods and point to several ecological and evolutionary topics that would benefit from considering temperament, such as phenotypic plasticity, conservation biology, population sampling, and invasion biology.

2,860 citations


Authors

Showing all 58756 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Albert Hofman2672530321405
Douglas G. Altman2531001680344
Hans Clevers199793169673
Craig B. Thompson195557173172
Patrick W. Serruys1862427173210
Ruedi Aebersold182879141881
Dennis S. Charney179802122408
Kenneth S. Kendler1771327142251
Jean Louis Vincent1611667163721
Vilmundur Gudnason159837123802
Monique M.B. Breteler15954693762
Lex M. Bouter158767103034
Elio Riboli1581136110499
Roy F. Baumeister157650132987
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

94% related

University of Washington
305.5K papers, 17.7M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of British Columbia
209.6K papers, 9.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023429
20221,014
20218,993
20208,578
20197,862
20187,020