scispace - formally typeset
Search or ask a question

Showing papers in "American Journal of Physiology-gastrointestinal and Liver Physiology in 2012"


Journal ArticleDOI
TL;DR: It is shown that the colonic mucosa-associated bacterial microbiome is altered in a subset of alcoholics, and this alteration is seen even after an extended period of sobriety, and correlates with endotoxemia in a subgroup ofcoholics.
Abstract: Several studies indicate the importance of colonic microbiota in metabolic and inflammatory disorders and importance of diet on microbiota composition. The effects of alcohol, one of the prominent components of diet, on colonic bacterial composition is largely unknown. Mounting evidence suggests that gut-derived bacterial endotoxins are cofactors for alcohol-induced tissue injury and organ failure like alcoholic liver disease (ALD) that only occur in a subset of alcoholics. We hypothesized that chronic alcohol consumption results in alterations of the gut microbiome in a subgroup of alcoholics, and this may be responsible for the observed inflammatory state and endotoxemia in alcoholics. Thus we interrogated the mucosa-associated colonic microbiome in 48 alcoholics with and without ALD as well as 18 healthy subjects. Colonic biopsy samples from subjects were analyzed for microbiota composition using length heterogeneity PCR fingerprinting and multitag pyrosequencing. A subgroup of alcoholics have an altered colonic microbiome (dysbiosis). The alcoholics with dysbiosis had lower median abundances of Bacteroidetes and higher ones of Proteobacteria. The observed alterations appear to correlate with high levels of serum endotoxin in a subset of the samples. Network topology analysis indicated that alcohol use is correlated with decreased connectivity of the microbial network, and this alteration is seen even after an extended period of sobriety. We show that the colonic mucosa-associated bacterial microbiome is altered in a subset of alcoholics. The altered microbiota composition is persistent and correlates with endotoxemia in a subgroup of alcoholics.

573 citations


Journal ArticleDOI
TL;DR: Results indicate that gut microbiota play a critical role in the generation of free CA in the gut lumen, and intraluminal administration of DA increased colonic water absorption in an in vivo ligated loop model of SPF-M, thus suggesting that luminal DA plays a role as a proabsorptive modulator of water transport in the colon.
Abstract: There is increasing interest in the bidirectional communication between the mammalian host and prokaryotic cells. Catecholamines (CA), candidate molecules for such communication, are presumed to play an important role in the gut lumen; however, available evidence is limited because of the lack of actual data about luminal CA. This study evaluated luminal CA levels in the gastrointestinal tract and elucidated the involvement of gut microbiota in the generation of luminal CA by comparing the findings among specific pathogen-free mice (SPF-M), germ-free mice (GF-M), and gnotobiotic mice. Substantial levels of free dopamine and norepinephrine were identified in the gut lumen of SPF-M. The free CA levels in the gut lumen were lower in GF-M than in SPF-M. The majority of CA was a biologically active, free form in SPF-M, whereas it was a biologically inactive, conjugated form in GF-M. The association of GF-M with either Clostridium species or SPF fecal flora, both of which have abundant β-glucuronidase activity, resulted in the drastic elevation of free CA. The inoculation of E. coli strain into GF-M induced a substantial amount of free CA, but the inoculation of its mutant strain deficient in the β-glucuronidase gene did not. The intraluminal administration of DA increased colonic water absorption in an in vivo ligated loop model of SPF-M, thus suggesting that luminal DA plays a role as a proabsorptive modulator of water transport in the colon. These results indicate that gut microbiota play a critical role in the generation of free CA in the gut lumen.

474 citations


Journal ArticleDOI
TL;DR: It is concluded that cirrhosis, especially when complicated with HE, is associated with significant alterations in the stool microbiome compared with healthy individuals.
Abstract: Hepatic encephalopathy (HE) has been related to gut bacteria and inflammation in the setting of intestinal barrier dysfunction. We aimed to link the gut microbiome with cognition and inflammation i...

447 citations


Journal ArticleDOI
TL;DR: Cirrhotic, especially HE, patients' mucosal microbiota is significantly different from controls with a lack of potentially beneficial autochthonous and overgrowth of potentially pathogenic genera, which are associated with poor cognition and inflammation.
Abstract: Although hepatic encephalopathy (HE) is linked to the gut microbiota, stool microbiome analysis has not found differences between HE and no-HE patients. This study aimed to compare sigmoid mucosal microbiome of cirrhotic patients to controls, between HE vs. no-HE patients, and to study their linkage with cognition and inflammation. Sixty cirrhotic patients (36 HE and 24 no-HE) underwent cognitive testing, stool collection, cytokine (Th1, Th2, Th17, and innate immunity), and endotoxin analysis. Thirty-six patients (19 HE and 17 no-HE) and 17 age-matched controls underwent sigmoid biopsies. Multitag pyrosequencing (including autochthonous genera, i.e., Blautia, Roseburia, Fecalibacterium, Dorea) was performed on stool and mucosa. Stool and mucosal microbiome differences within/between groups and correlation network analyses were performed. Controls had significantly higher autochthonous and lower pathogenic genera compared with cirrhotic patients, especially HE patients. HE patients had worse MELD (model for end-stage liver disease) score and cognition and higher IL-6 and endotoxin than no-HE. Mucosal microbiota was different from stool within both HE/no-HE groups. Between HE/no-HE patients, there was no difference in stool microbiota but mucosal microbiome was different with lower Roseburia and higher Enterococcus, Veillonella, Megasphaera, and Burkholderia abundance in HE. On network analysis, autochthonous genera (Blautia, Fecalibacterium, Roseburia, and Dorea) were associated with good cognition and decreased inflammation in both HE/no-HE, whereas genera overrepresented in HE (Enterococcus, Megasphaera, and Burkholderia) were linked to poor cognition and inflammation. Sigmoid mucosal microbiome differs significantly from stool microbiome in cirrhosis. Cirrhotic, especially HE, patients' mucosal microbiota is significantly different from controls with a lack of potentially beneficial autochthonous and overgrowth of potentially pathogenic genera, which are associated with poor cognition and inflammation.

438 citations


Journal ArticleDOI
TL;DR: It is concluded that CCR2 and Kupffer cells contribute to the progression of NASH by recruiting bone marrow-derived monocytes.
Abstract: Inflammatory cell infiltration in the liver is a hallmark of nonalcoholic steatohepatitis (NASH). The chemokine-chemokine receptor interaction induces inflammatory cell recruitment. CC-chemokine receptor (CCR)2 is expressed on hepatic macrophages and hepatic stellate cells. This study aims to investigate the therapeutic potential of CCR2 to NASH. Twenty-two weeks on a choline-deficient amino acid-defined (CDAA) diet induced steatosis, inflammatory cell infiltration, and liver fibrosis with increased CCR2 and monocyte chemoattractant protein (MCP)-1 expression in the wild-type livers. The infiltrated macrophages expressed CD68, CCR2, and a marker of bone marrow-derived monocytes, Ly6C. CCR2−/− mice had less steatosis, inflammatory cell infiltration, and fibrosis, and hepatic macrophages expressing CD68 and Ly6C were decreased. Toll-like receptor (TLR)4−/−, TLR9−/−, and MyD88−/− mice had reduced hepatic macrophage infiltration with decreased MCP-1 and CCR2 expression because TLR signaling is a potent inducer of MCP-1. To assess the role of Kupffer cells at the onset of NASH, Kupffer cells were depleted by liposomal clodronate. The Kupffer cell depletion ameliorated steatohepatitis with a decrease in the MCP-1 expression and recruitment of Ly6C-expressing macrophages at the onset of NASH. Finally, to test the therapeutic potential of targeting CCR2, a CCR2 inhibitor was administered to mice on a CDAA diet. The pharmaceutical inhibition of CCR2 prevented infiltration of the Ly6C-positive macrophages, resulting in an inhibition of liver inflammation and fibrosis. We concluded that CCR2 and Kupffer cells contribute to the progression of NASH by recruiting bone marrow-derived monocytes.

431 citations


Journal ArticleDOI
TL;DR: It is indicated that saturated fat (HF-PO) has a more stimulatory effect on weight gain and hepatic lipid accumulation than unsaturated fat ( HF-OO and HF-SO).
Abstract: We studied the effect of dietary fat type, varying in polyunsaturated-to-saturated fatty acid ratios (P/S), on development of metabolic syndrome. C57Bl/6J mice were fed purified high-fat diets (45E% fat) containing palm oil (HF-PO; P/S 0.4), olive oil (HF-OO; P/S 1.1), or safflower oil (HF-SO; P/S 7.8) for 8 wk. A low-fat palm oil diet (LF-PO; 10E% fat) was used as a reference. Additionally, we analyzed diet-induced changes in gut microbiota composition and mucosal gene expression. The HF-PO diet induced a higher body weight gain and liver triglyceride content compared with the HF-OO, HF-SO, or LF-PO diet. In the intestine, the HF-PO diet reduced microbial diversity and increased the Firmicutes-to-Bacteroidetes ratio. Although this fits a typical obesity profile, our data clearly indicate that an overflow of the HF-PO diet to the distal intestine, rather than obesity itself, is the main trigger for these gut microbiota changes. A HF-PO diet-induced elevation of lipid metabolism-related genes in the distal small intestine confirmed the overflow of palm oil to the distal intestine. Some of these lipid metabolism-related genes were previously already associated with the metabolic syndrome. In conclusion, our data indicate that saturated fat (HF-PO) has a more stimulatory effect on weight gain and hepatic lipid accumulation than unsaturated fat (HF-OO and HF-SO). The overflow of fat to the distal intestine on the HF-PO diet induced changes in gut microbiota composition and mucosal gene expression. We speculate that both are directly or indirectly contributive to the saturated fat-induced development of obesity and hepatic steatosis.

345 citations


Journal ArticleDOI
TL;DR: The role of the healthy intestinal epithelium as a barrier between the lumen and the rest of the body with a focus on tight junctions is summarized to explore how this increased permeability may elicit immune responses that affect afferent nerves, resulting in the pain associated with IBS.
Abstract: Irritable bowel syndrome (IBS) is one of the most common gastrointestinal ailments among those seeking health care for gastrointestinal disorders. Despite its prevalence, IBS pathophysiology is still not completely understood. Continued elucidation of IBS etiological mechanisms will lead to a greater appreciation of possible therapeutic targets. In the past decade, there has been increasing focus on the possible connection between increased intestinal mucosal permeability, inflammation, and visceral hypersensitivity. Increased permeability in subsets of IBS patients has been observed and the possible mechanisms underlying this defect are just beginning to be understood. The objectives of this review are to summarize the role of the healthy intestinal epithelium as a barrier between the lumen and the rest of the body with a focus on tight junctions; to examine the lines of evidence that suggest that different triggers lead to increased intestinal mucosal permeability and disruption of tight junctions in IBS patients; and to explore how this increased permeability may elicit immune responses that affect afferent nerves, resulting in the pain associated with IBS.

306 citations


Journal ArticleDOI
TL;DR: It is shown that colonic mucosa from patients with UC exhibit increased signal transducer and activator of transcription 1 (STAT1) activation, and this STAT1 hyperactivation is correlated with increased T cell infiltration, suggesting that butyrate delivers a double hit: induction of T cell apoptosis to eliminate the source of inflammation and suppression of IFN-γ-mediated inflammation in colonic epithelial cells, to suppress colonic inflammation.
Abstract: Butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit protective effects toward inflammatory diseases such as ulcerative colitis (UC) and inflammation-mediated c...

224 citations


Journal ArticleDOI
TL;DR: The pharmacological data further support the clinical evaluation of the utility of GLP-1R agonists for treatment of NASH and Interestingly, the role of endogenous GLp-1Rs in NASH merits further exploration as the GLP -1RKO model was protected from the deleterious hepatic effects of HTF.
Abstract: These preclinical studies aimed to 1) increase our understanding the dietary induction of nonalcoholic steatohepatitis (NASH), and, 2) further explore the utility and mechanisms of glucagon-like pe...

217 citations


Journal ArticleDOI
TL;DR: It is suggested that bacteria-free LGG culture supernatant provides a novel strategy for prevention of acute alcohol-induced liver injury by promoting HIF signaling, leading to the suppression of alcohol- induced increased intestinal permeability and endotoxemia.
Abstract: Endotoxemia is a contributing cofactor to alcoholic liver disease (ALD), and alcohol-induced increased intestinal permeability is one of the mechanisms of endotoxin absorption. Probiotic bacteria have been shown to promote intestinal epithelial integrity and protect barrier function in inflammatory bowel disease (IBD) and in ALD. Although it is highly possible that some common molecules secreted by probiotics contribute to this action in IBD, the effect of probiotic culture supernatant has not yet been studied in ALD. We examined the effects of Lactobacillus rhamnosus GG culture supernatant (LGG-s) on the acute alcohol-induced intestinal integrity and liver injury in a mouse model. Mice on standard chow diet were supplemented with supernatant from LGG culture (109 colony-forming unit/mouse) for 5 days, and one dose of alcohol at 6 g/kg body wt was administered via gavage. Intestinal permeability was measured by FITC-FD-4 ex vivo. Alcohol-induced liver injury was examined by measuring the activity of alanine aminotransferase (ALT) in plasma, and liver steatosis was evaluated by triglyceride content and Oil Red O staining of the liver sections. LGG-s pretreatment restored alcohol-induced reduction in ileum mRNA levels of claudin-1, intestine trefoil factor (ITF), P-glycoprotein (P-gp), and cathelin-related antimicrobial peptide (CRAMP), which play important roles on intestinal barrier integrity. As a result, LGG-s pretreatment significantly inhibited the alcohol-induced intestinal permeability, endotoxemia and subsequently liver injury. Interestingly, LGG-s pretreatment increased ileum mRNA expression of hypoxia-inducible factor (HIF)-2α, an important transcription factor of ITF, P-gp, and CRAMP. These results suggest that LGG-s ameliorates the acute alcohol-induced liver injury by promoting HIF signaling, leading to the suppression of alcohol-induced increased intestinal permeability and endotoxemia. The use of bacteria-free LGG culture supernatant provides a novel strategy for prevention of acute alcohol-induced liver injury.

200 citations


Journal ArticleDOI
TL;DR: It is concluded that liraglutide reduces the harmful effects of an ALIOS diet by improving insulin sensitivity and by reducing lipid accumulation in liver through multiple mechanisms including, transport, and increase β-oxidation.
Abstract: The aims of this study were designed to determine whether liraglutide, a long-acting glucagon-like peptide, could reverse the adverse effects of a diet high in fat that also contained trans-fat and...

Journal ArticleDOI
TL;DR: A systematic nomenclature for in vitro cultures of the small and large intestine is proposed and structures produced in vitro are defined and described, specifically: enterosphere, enteroid, reconstituted intestinal organoid, induced intestinal organoids, colonosphere, colonoid, and colonic organoid.
Abstract: Many advances have been reported in the long-term culture of intestinal mucosal cells in recent years. A significant number of publications have described new culture media, cell formations, and growth patterns. Furthermore, it is now possible to study, e.g., the capabilities of isolated stem cells or the interactions between stem cells and mesenchyme. However, at the moment there is significant variation in the way these structures are described and named. A standardized nomenclature would benefit the ability to communicate and compare findings from different laboratories using the different culture systems. To address this issue, members of the NIH Intestinal Stem Cell Consortium herein propose a systematic nomenclature for in vitro cultures of the small and large intestine. We begin by describing the structures that are generated by preparative steps. We then define and describe structures produced in vitro, specifically: enterosphere, enteroid, reconstituted intestinal organoid, induced intestinal organoid, colonosphere, colonoid, and colonic organoid.

Journal ArticleDOI
TL;DR: In this review, the different approaches that have been used to characterize microbial metabolites, yielding information on the functional end products of microbial metabolism, have been summarized.
Abstract: With the use of molecular techniques, numerous studies have evaluated the composition of the intestinal microbiota in health and disease. However, it is of major interest to supplement this with a ...

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview on the recent advances in understanding of GI physiology and pathophysiology in relation to strenuous exercise and discuss various approaches to determine the impact of exercise on the individual athlete's GI tract.
Abstract: Physical exercise places high demands on the adaptive capacity of the human body. Strenuous physical performance increases the blood supply to active muscles, cardiopulmonary system, and skin to meet the altered demands for oxygen and nutrients. The redistribution of blood flow, necessary for such an increased blood supply to the periphery, significantly reduces blood flow to the gut, leading to hypoperfusion and gastrointestinal (GI) compromise. A compromised GI system can have a negative impact on exercise performance and subsequent postexercise recovery due to abdominal distress and impairments in the uptake of fluid, electrolytes, and nutrients. In addition, strenuous physical exercise leads to loss of epithelial integrity, which may give rise to increased intestinal permeability with bacterial translocation and inflammation. Ultimately, these effects can deteriorate postexercise recovery and disrupt exercise training routine. This review provides an overview on the recent advances in our understanding of GI physiology and pathophysiology in relation to strenuous exercise. Various approaches to determine the impact of exercise on the individual athlete's GI tract are discussed. In addition, we elaborate on several promising components that could be exploited for preventive interventions.

Journal ArticleDOI
TL;DR: This ex vivo method for analysis of mucus properties in human colon and mouse small and large intestine retains key properties from the mucus system in vivo, and allows for studies of the highly dynamic mucUS system under well-controlled conditions.
Abstract: The colon mucus layers minimize the contact between the luminal flora and the epithelial cells, and defects in this barrier may lead to colonic inflammation. We now describe an ex vivo method for analysis of mucus properties in human colon and mouse small and large intestine. Intestinal explants were mounted in horizontal perfusion chambers. The mucus surface was visualized by adding charcoal particles on the apical side, and mucus thickness was measured using a micropipette. Mucus thickness, adhesion, and growth rate were recorded for 1 h. In mouse and human colon, the ability of the mucus to act as a barrier to beads the size of bacteria was also evaluated. Tissue viability was monitored by transepithelial potential difference. In mouse ileum, the mucus could be removed by gentle aspiration, whereas in colon ∼40 μm of the mucus remained attached to the epithelial surface. Both mouse and human colon had an inner mucus layer that was not penetrated by the fluorescent beads. Spontaneous mucus growth was observed in human (240 μm/h) and mouse (100 μm/h) colon but not in mouse ileum. In contrast, stimulation with carbachol induced a higher mucus secretion in ileum than colon (mouse ileum: Δ200 μm, mouse colon: Δ130 μm, human colon: Δ140 μm). In conclusion, while retaining key properties from the mucus system in vivo, this setup also allows for studies of the highly dynamic mucus system under well-controlled conditions.

Journal ArticleDOI
TL;DR: It is concluded that LPC-induced lipoapoptosis is dependent on mechanisms largely indistinguishable from PA, and FFA-mediated cytotoxicity is indirect via the generation of the toxic metabolite, LPC.
Abstract: Isolated hepatocytes undergo lipoapoptosis, a feature of hepatic lipotoxicity, on treatment with saturated free fatty acids (FFA) such as palmitate (PA) However, it is unknown if palmitate is directly toxic to hepatocytes or if its toxicity is indirect via the generation of lipid metabolites such as lysophosphatidylcholine (LPC) PA-mediated hepatocyte lipoapoptosis is associated with endoplasmic reticulum (ER) stress, c-Jun NH2-terminal kinase (JNK) activation, and a JNK-dependent upregulation of the potent proapoptotic BH3-only protein PUMA (p53 upregulated modulator of apoptosis) Our aim was to determine which of these mechanisms of lipotoxicity are activated by PA-derived LPC We employed Huh-7 cells and isolated murine and human primary hepatocytes Intracellular LPC concentrations increase linearly as a function of the exogenous, extracellular PA, stearate, or LPC concentration Incubation of Huh-7 cells or primary hepatocytes with LPC induced cell death by apoptosis in a concentration-dependent manner Substituting LPC for PA resulted in caspase-dependent cell death that was accompanied by activating phosphorylation of JNK with c-Jun phosphorylation and an increase in PUMA expression LPC also induced ER stress as manifest by eIF2α phosphorylation and CAAT/enhancer binding homologous protein (CHOP) induction LPC cytotoxicity was attenuated by pharmacological inhibition of JNK or glycogen synthase kinase-3 (GSK-3) Similarly, short-hairpin RNA (shRNA)-targeted knockdown of CHOP protected Huh-7 cells against LPC-induced toxicity The LPC-induced PUMA upregulation was prevented by JNK inhibition or shRNA-targeted knockdown of CHOP Finally, genetic deficiency of PUMA rendered murine hepatocytes resistant to LPC-induced apoptosis We concluded that LPC-induced lipoapoptosis is dependent on mechanisms largely indistinguishable from PA These data suggest that FFA-mediated cytotoxicity is indirect via the generation of the toxic metabolite, LPC

Journal ArticleDOI
TL;DR: HP meals suppress energy intake in lean and obese subjects, an effect potentially mediated by CCK and ghrelin, while obese individuals appear to be less sensitive to the satiating effects of fat.
Abstract: While protein is regarded as the most satiating macronutrient, many studies have employed test meals that had very high and unsustainable protein contents. Furthermore, the comparative responses be...

Journal ArticleDOI
TL;DR: Both L. reuteri strains significantly increased survival rate and decreased the incidence and severity of NEC, with optimal effects from DSM 17938, and Cow milk formula feeding produced a similar but milder proinflammatory profile in the intestine that was also ameliorated by 17938.
Abstract: Necrotizing enterocolitis (NEC) is the leading gastrointestinal cause of mortality and morbidity in the premature infant. Premature infants have a delay in intestinal colonization by commensal bacteria and colonization with potentially pathogenic organisms. Lactobacillus reuteri is a probiotic that inhibits enteric infections, modulates the immune system, and may be beneficial to prevent NEC. In previous studies, L. reuteri strains DSM 17938 and ATCC PTA 4659 differentially modulated inflammation in vitro; however, the strains had equivalent anti-inflammatory responses in LPS feeding-induced ileitis in neonatal rats in vivo. The impact of these two strains in the prevention of NEC has not been previously investigated. NEC was induced in newborn rats by orogastric formula feeding and exposure to hypoxia. L. reuteri was added to the formula to prevent NEC. NEC score, Toll-like receptor (TLR)-signaling genes, phospho-IκB activity, and cytokine levels in the intestine were examined. Both strains significantly increased survival rate and decreased the incidence and severity of NEC, with optimal effects from DSM 17938. In response to probiotic, mRNA expression of IL-6, TNF-α, TLR4, and NF-κB was significantly downregulated, while mRNA levels of anti-inflammatory cytokine IL-10 were significantly upregulated. In parallel, L. reuteri treatment led to decrease intestinal protein levels of TLR4 and cytokine levels of TNF-α and IL-1β in newborn rats with NEC. Both strains significantly inhibited not only intestinal LPS-induced phospho-IκB activity in an ex vivo study but also decreased the levels of phospho-IκB in the intestines of NEC rat model. Cow milk formula feeding produced a similar but milder proinflammatory profile in the intestine that was also ameliorated by 17938. Our studies demonstrate that each of the two L. reuteri strains has potential therapeutic value in our NEC model and in enteritis associated with cow milk feeding. These results support the concept that L. reuteri may represent a valuable treatment to prevent NEC.

Journal ArticleDOI
TL;DR: Berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells, and may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders.
Abstract: Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders.

Journal ArticleDOI
TL;DR: Microarray demonstrated that regenerating Sox9-EGFP High cells exhibited transcriptomic changes linked to p53-signaling and ISC-like functions including DNA repair and reduced oxidative metabolism, which support a model in which Sox9 theEGFP Low cells represent active ISCs, Sox9TheEGFP high cells contain radiation-activatable cells with ISC characteristics, and both participate in crypt regeneration.
Abstract: Recent identification of intestinal epithelial stem cell (ISC) markers and development of ISC reporter mice permit visualization and isolation of regenerating ISCs after radiation to define their functional and molecular phenotypes. Previous studies in uninjured intestine of Sox9-EGFP reporter mice demonstrate that ISCs express low levels of Sox9-EGFP (Sox9-EGFP Low), whereas enteroendocrine cells (EEC) express high levels of Sox9-EGFP (Sox9-EGFP High). We hypothesized that Sox9-EGFP Low ISCs would expand after radiation, exhibit enhanced proliferative capacities, and adopt a distinct gene expression profile associated with rapid proliferation. Sox9-EGFP mice were given 14 Gy abdominal radiation and studied between days 3 and 9 postradiation. Radiation-induced changes in number, growth, and transcriptome of the different Sox9-EGFP cell populations were determined by histology, flow cytometry, in vitro culture assays, and microarray. Microarray confirmed that nonirradiated Sox9-EGFP Low cells are enriched for Lgr5 mRNA and mRNAs enriched in Lgr5-ISCs and identified additional putative ISC markers. Sox9-EGFP High cells were enriched for EEC markers, as well as Bmi1 and Hopx, which are putative markers of quiescent ISCs. Irradiation caused complete crypt loss, followed by expansion and hyperproliferation of Sox9-EGFP Low cells. From nonirradiated intestine, only Sox9-EGFP Low cells exhibited ISC characteristics of forming organoids in culture, whereas during regeneration both Sox9-EGFP Low and High cells formed organoids. Microarray demonstrated that regenerating Sox9-EGFP High cells exhibited transcriptomic changes linked to p53-signaling and ISC-like functions including DNA repair and reduced oxidative metabolism. These findings support a model in which Sox9-EGFP Low cells represent active ISCs, Sox9-EGFP High cells contain radiation-activatable cells with ISC characteristics, and both participate in crypt regeneration.

Journal ArticleDOI
TL;DR: In conclusion, overexpression of hepatic PGC-1α and subsequent increases in FAO through elevated mitochondrial content and/or function result in reduced TAG storage and secretion in the in vitro and in vivo milieu.
Abstract: Studies have shown that decreased mitochondrial content and function are associated with hepatic steatosis. We examined whether peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) overexpression and a subsequent increase in mitochondrial content and function in rat primary hepatocytes (in vitro) and Sprague-Dawley rats (in vivo) would comprehensively alter mitochondrial lipid metabolism, including complete (CO2) and incomplete (acid-soluble metabolites) fatty acid oxidation (FAO), tricarboxylic acid cycle flux, and triacylglycerol (TAG) storage and export. PGC-1α overexpression in primary hepatocytes produced an increase in markers of mitochondrial content and function (citrate synthase, mitochondrial DNA, and electron transport system complex proteins) and an increase in FAO, which was accompanied by reduced TAG storage and TAG secretion compared with control. Also, the PGC-1α-overexpressing hepatocytes were protected from excess TAG accumulation following overnight lipid treatment. PGC-1α overexpression in hepatocytes lowered expression of genes critical to VLDL assembly and secretion (apolipoprotein B and microsomal triglyceride transfer protein). Adenoviral transduction of rats with PGC-1α resulted in a liver-specific increase in PGC-1α expression and produced an in vivo liver phenotype of increased FAO via increased mitochondrial function that also resulted in reduced hepatic TAG storage and decreased plasma TAG levels. In conclusion, overexpression of hepatic PGC-1α and subsequent increases in FAO through elevated mitochondrial content and/or function result in reduced TAG storage and secretion in the in vitro and in vivo milieu.

Journal ArticleDOI
TL;DR: Current techniques of assessing visceral perception include the computerized barostat using rectal distensions, registering responses induced by sensory stimuli including the flexor reflex and cerebral evoked potentials, as well as brain imaging modalities such as functional magnetic resonance imaging and positron emission tomography.
Abstract: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, characterized by recurrent abdominal pain or discomfort in combination with disturbed bowel habits in the absence of...

Journal ArticleDOI
TL;DR: P2X7 and exposure to the ligands ATP and NAD are required for manifestations of APAP-induced hepatotoxicity.
Abstract: Inflammation contributes to liver injury in acetaminophen (APAP) hepatotoxicity in mice and is triggered by stimulation of immune cells. The purinergic receptor P2X7 is upstream of the nod-like rec...

Journal ArticleDOI
TL;DR: Experimental outcomes establish the importance of afferent drive in IBS, and highlight deficiencies in existing knowledge and identify several areas for further investigation, which are expected to significantly advance the understanding of neural and neuro-immune contributions to IBS pain and hypersensitivity.
Abstract: Irritable bowel syndrome (IBS) is characterized as functional because a pathobiological cause is not readily apparent. Considerable evidence, however, documents that sensitizing proinflammatory and lipotoxic lipids, mast cells and their products, tryptases, enteroendocrine cells, and mononuclear phagocytes and their receptors are increased in tissues of IBS patients with colorectal hypersensitivity. It is also clear from recordings in animals of the colorectal afferent innervation that afferents exhibit long-term changes in models of persistent colorectal hypersensitivity. Such changes in afferent excitability and responses to mechanical stimuli are consistent with relief of discomfort and pain in IBS patients, including relief of referred abdominal hypersensitivity, upon intra-rectal instillation of local anesthetic. In the aggregate, these experimental outcomes establish the importance of afferent drive in IBS, consistent with a larger literature with respect to other chronic conditions in which pain is a principal complaint (e.g., neuropathic pain, painful bladder syndrome, fibromyalgia). Accordingly, colorectal afferents and the environment in which these receptive endings reside constitute the focus of this review. That environment includes understudied and incompletely understood contributions from immune-competent cells resident in and recruited into the colorectum. We close this review by highlighting deficiencies in existing knowledge and identifying several areas for further investigation, resolution of which we anticipate would significantly advance our understanding of neural and neuro-immune contributions to IBS pain and hypersensitivity.

Journal ArticleDOI
TL;DR: It is proposed that the lysosomal/autophagic dysfunction is a key initiating event in pancreatitis and a converging point of multiple deranged pathways.
Abstract: Acute pancreatitis is an inflammatory disease of the exocrine pancreas that carries considerable morbidity and mortality; its pathophysiology remains poorly understood. Recent findings from experimental models and genetically altered mice summarized in this review reveal that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis and that one cause of autophagy impairment is defective function of lysosomes. We propose that the lysosomal/autophagic dysfunction is a key initiating event in pancreatitis and a converging point of multiple deranged pathways. There is strong evidence supporting this hypothesis. Investigation of autophagy in pancreatitis has just started, and many questions about the “upstream” mechanisms mediating the lysosomal/autophagic dysfunction and the “downstream” links to pancreatitis pathologies need to be explored. Answers to these questions should provide insight into novel molecular targets and therapeutic strategies for treatment of pancreatitis.

Journal ArticleDOI
TL;DR: This review provides an overview of the currently available animal models of intestinal fibrosis, taking into consideration the methods of induction, key characteristics of each model, and underlying mechanisms.
Abstract: Fibrosis is a serious condition complicating chronic inflammatory processes affecting the intestinal tract. Advances in this field that rely on human studies have been slow and seriously restricted by practical and logistic reasons. As a consequence, well-characterized animal models of intestinal fibrosis have emerged as logical and essential systems to better define and understand the pathophysiology of fibrosis. In point of fact, animal models allow the execution of mechanistic studies as well as the implementation of clinical trials with novel, pathophysiology-based therapeutic approaches. This review provides an overview of the currently available animal models of intestinal fibrosis, taking into consideration the methods of induction, key characteristics of each model, and underlying mechanisms. Currently available models will be classified into seven categories: spontaneous, gene-targeted, chemical-, immune-, bacteria-, and radiation-induced as well as postoperative fibrosis. Each model will be discussed in regard to its potential to create research opportunities to gain insights into the mechanisms of intestinal fibrosis and stricture formation and assist in the development of effective and specific antifibrotic therapies.

Journal ArticleDOI
TL;DR: Overall, there is limited evidence of a genetic association with IBS; the most frequently studied association is with 5-HTTLPR, and the most replicated association iswith TNF superfamily member 15.
Abstract: The objectives of this review are twofold. Our first objective is to evaluate the evidence supporting a role for genetics in irritable bowel syndrome (IBS). Specific examples of the associations of...

Journal ArticleDOI
TL;DR: It is important to understand the mechanisms of PepT1 action during chronic intestinal inflammation to develop future therapies addressing inappropriate immune activation in the colon, and to avoid the use of ineffective therapies to treat inflammatory bowel disease.
Abstract: Intestinal inflammation is characterized by epithelial disruption, leading to loss of barrier function and the recruitment of immune cells, including neutrophils Although the mechanisms are not yet completely understood, interactions between environmental and immunological factors are thought to be critical in the initiation and progression of intestinal inflammation In recent years, it has become apparent that the di/tripeptide transporter PepT1 may play an important role in the pathogenesis of such inflammation In healthy individuals, PepT1 is primarily expressed in the small intestine and transports di/tripeptides for metabolic purposes However, during chronic inflammation such as that associated with inflammatory bowel disease, PepT1 expression is upregulated in the colon, wherein the protein is normally expressed either minimally or not at all Several recent studies have shown that PepT1 binds to and transports various bacterial di/tripeptides into colon cells, leading to activation of downstream proinflammatory responses via peptide interactions with innate immune receptors In the present review, we examine the relationship between colonic PepT1-mediated peptide transport in the colon and activation of innate immune responses during disease It is important to understand the mechanisms of PepT1 action during chronic intestinal inflammation to develop future therapies addressing inappropriate immune activation in the colon

Journal ArticleDOI
TL;DR: It is demonstrated that MCP-1 is an important mediator of tumor growth and immune regulation that may serve as an important biomarker and/or therapeutic target in colon cancer.
Abstract: Tumor-associated macrophages are associated with poor prognosis in certain cancers. Monocyte chemoattractant protein 1 (MCP-1) is thought to be the most important chemokine for recruitment of macro...

Journal ArticleDOI
TL;DR: It is shown that enteral CDCA not only resolves PNALD but acts as a potent intestinal trophic agent and secretagogue for GLP-2 and also normalized serum bile acids and liver TG.
Abstract: Total parenteral nutrition (TPN) is essential for patients with impaired gut function but leads to parenteral nutrition-associated liver disease (PNALD). TPN disrupts the normal enterohepatic circulation of bile acids, and we hypothesized that it would decrease intestinal expression of the newly described metabolic hormone fibroblast growth factor-19 (FGF19) and also glucagon-like peptides-1 and -2 (GLP-1 and GLP-2). We tested the effects of restoring bile acids by treating a neonatal piglet PNALD model with chenodeoxycholic acid (CDCA). Neonatal pigs received enteral feeding (EN), TPN, or TPN + CDCA for 14 days, and responses were assessed by serum markers, histology, and levels of key regulatory peptides. Cholestasis and steatosis were demonstrated in the TPN group relative to EN controls by elevated levels of serum total and direct bilirubin and also bile acids and liver triglyceride (TG) content. CDCA treatment improved direct bilirubin levels by almost fourfold compared with the TPN group and also normalized serum bile acids and liver TG. FGF19, GLP-1, and GLP-2 were decreased in plasma of the TPN group compared with the EN group but were all induced by CDCA treatment. Intestinal mucosal growth marked by weight and villus/crypt ratio was significantly reduced in the TPN group compared with the EN group, and CDCA treatment increased both parameters. These results suggest that decreased circulating FGF19 during TPN may contribute to PNALD. Moreover, we show that enteral CDCA not only resolves PNALD but acts as a potent intestinal trophic agent and secretagogue for GLP-2.