scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cellular Physiology in 2011"


Journal ArticleDOI
TL;DR: Mechanistic studies of retinoid signaling continue to suggest novel drug targets and will improve therapeutic strategies for cancer and other diseases, such as immune‐mediated inflammatory diseases.
Abstract: Retinoids are ubiquitous signaling molecules that influence nearly every cell type, exert profound effects on development, and complement cancer chemotherapeutic regimens. All-trans retinoic acid (RA) and other active retinoids are generated from vitamin A (retinol), but key aspects of the signaling pathways required to produce active retinoids remain unclear. Retinoids generated by one cell type can affect nearby cells, so retinoids also function in intercellular communication. RA induces differentiation primarily by binding to RARs, transcription factors that associate with RXRs and bind RAREs in the nucleus. Binding of RA: (1) initiates changes in interactions of RAR/RXRs with co-repressor and co-activator proteins, activating transcription of primary target genes; (2) alters interactions with proteins that induce epigenetic changes; (3) induces transcription of genes encoding transcription factors and signaling proteins that further modify gene expression (e.g., FOX03A, Hoxa1, Sox9, TRAIL, UBE2D3); and (4) results in alterations in estrogen receptor α signaling. Proteins that bind at or near RAREs include Sin3a, N-CoR1, PRAME, Trim24, NRIP1, Ajuba, Zfp423, and MN1/TEL. Interactions among retinoids, RARs/RXRs, and these proteins explain in part the powerful effects of retinoids on stem cell differentiation. Studies of this retinol signaling cascade enhance our ability to understand and regulate stem cell differentiation for therapeutic and scientific purposes. In cancer chemotherapeutic regimens retinoids can promote tumor cell differentiation and/or induce proteins that sensitize tumors to drug combinations. Mechanistic studies of retinoid signaling continue to suggest novel drug targets and will improve therapeutic strategies for cancer and other diseases, such as immune-mediated inflammatory diseases.

345 citations


Journal ArticleDOI
TL;DR: The potential utility of the EAAT2 promoter is emphasized for developing both low and high throughput screening assays to identify novel small molecule regulators of glutamate transport with potential to ameliorate pathological changes occurring during and causing neurodegeneration.
Abstract: Glutamate is an essential excitatory neurotransmitter regulating brain functions. Excitatory amino acid transporter (EAAT)-2 is one of the major glutamate transporters expressed predominantly in astroglial cells and is responsible for 90% of total glutamate uptake. Glutamate transporters tightly regulate glutamate concentration in the synaptic cleft. Dysfunction of EAAT2 and accumulation of excessive extracellular glutamate has been implicated in the development of several neurodegenerative diseases including Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Analysis of the 2.5 kb human EAAT2 promoter showed that NF-κB is an important regulator of EAAT2 expression in astrocytes. Screening of approximately 1,040 FDA-approved compounds and nutritionals led to the discovery that many β-lactam antibiotics are transcriptional activators of EAAT2 resulting in increased EAAT2 protein levels. Treatment of animals with ceftriaxone (CEF), a β-lactam antibiotic, led to an increase of EAAT2 expression and glutamate transport activity in the brain. CEF has neuroprotective effects in both in vitro and in vivo models based on its ability to inhibit neuronal cell death by preventing glutamate excitotoxicity. CEF increases EAAT2 transcription in primary human fetal astrocytes through the NF-κB signaling pathway. The NF-κB binding site at −272 position was critical in CEF-mediated EAAT2 protein induction. These studies emphasize the importance of transcriptional regulation in controlling glutamate levels in the brain. They also emphasize the potential utility of the EAAT2 promoter for developing both low and high throughput screening assays to identify novel small molecule regulators of glutamate transport with potential to ameliorate pathological changes occurring during and causing neurodegeneration. J. Cell. Physiol. 226: 2484–2493, 2011. © 2010 Wiley-Liss, Inc.

341 citations


Journal ArticleDOI
TL;DR: Recent data relating to the specific role of pH regulation in tumor cell survival is summarized and membrane transport and enzyme studies are focused on in an attempt to elucidate their respective functions regarding tumor cell pH regulation.
Abstract: A distinguishing phenotype of solid tumors is the presence of an alkaline cellular feature despite the surrounding acidic microenvironment. This phenotypic characteristic of tumors, originally described by Otto Warburg, arises due to alterations in metabolism of solid tumors. Hypoxic regions of solid tumors develop due to poor vascularization and in turn regulate the expression of numerous genes via the transcription factor HIF-1. Ultimately, the tumor microenvironment directs the development of tumor cells adapted to survive in an acidic surrounding where normal cells perish. The provision of unique pH characteristics in tumor cells provides a defining trait that has led to the pursuit of treatments that target metabolism, hypoxia, and pH-related mechanisms to selectively kill cancer cells. Numerous studies over the past decade involving the cancer-specific carbonic anhydrase IX have re-kindled an interest in pH disruption-based therapies. Although an acidification of the intracellular compartment is established as a means to induce normal cell death, the defining role of acid-base disturbances in tumor physiology and survival remains unclear. The aim of this review is to summarize recent data relating to the specific role of pH regulation in tumor cell survival. We focus on membrane transport and enzyme studies in an attempt to elucidate their respective functions regarding tumor cell pH regulation. These data are discussed in the context of future directions for the field of tumor cell acid-base-related research.

313 citations


Journal ArticleDOI
TL;DR: MicroRNA‐26a represents an important new regulator of SMC biology and a potential therapeutic target in AAA disease, and alters TGF‐β pathway signaling.
Abstract: Aberrant smooth muscle cell (SMC) plasticity has been implicated in a variety of vascular disorders including atherosclerosis, restenosis, and abdominal aortic aneurysm (AAA) formation. While the pathways governing this process remain unclear, epigenetic regulation by specific microRNAs (miRNAs) has been demonstrated in SMCs. We hypothesized that additional miRNAs might play an important role in determining vascular SMC phenotype. Microarray analysis of miRNAs was performed on human aortic SMCs undergoing phenotypic switching in response to serum withdrawal, and identified 31 significantly regulated entities. We chose the highly conserved candidate miRNA-26a for additional studies. Inhibition of miRNA-26a accelerated SMC differentiation, and also promoted apoptosis, while inhibiting proliferation and migration. Overexpression of miRNA-26a blunted differentiation. As a potential mechanism, we investigated whether miRNA-26a influences TGF-β-pathway signaling. Dual-luciferase reporter assays demonstrated enhanced SMAD signaling with miRNA-26a inhibition, and the opposite effect with miRNA-26a overexpression in transfected human cells. Furthermore, inhibition of miRNA-26a increased gene expression of SMAD-1 and SMAD-4, while overexpression inhibited SMAD-1. MicroRNA-26a was also found to be downregulated in two mouse models of AAA formation (2.5- to 3.8-fold decrease, P < 0.02) in which enhanced switching from contractile to synthetic phenotype occurs. In summary, miRNA-26a promotes vascular SMC proliferation while inhibiting cellular differentiation and apoptosis, and alters TGF-β pathway signaling. MicroRNA-26a represents an important new regulator of SMC biology and a potential therapeutic target in AAA disease.

279 citations


Journal ArticleDOI
TL;DR: Osteogenic and chondrogenic MSC cultures appear to adopt the balance of oxidative phosphorylation and glycolysis reported for the respective mature cell phenotypes.
Abstract: Human mesenchymal stem cells (MSCs) reside under hypoxic conditions in vivo, between 4% and 7% oxygen. Differentiation of MSCs under hypoxic conditions results in inhibited osteogenesis, while chondrogenesis is unaffected. The reasons for these results may be associated with the inherent metabolism of the cells. The present investigation measured the oxygen consumption, glucose consumption and lactate production of MSCs during proliferation and subsequent differentiation towards the osteogenic and chondrogenic lineages. MSCs expanded under normoxia had an oxygen consumption rate of ∼98 fmol/cell/h, 75% of which was azide-sensitive, suggesting that these cells derive a significant proportion of ATP from oxidative phosphorylation in addition to glycolysis. By contrast, MSCs differentiated towards the chondrogenic lineage using pellet culture had significantly reduced oxygen consumption after 24 h in culture, falling to ∼12 fmol/cell/h after 21 days, indicating a shift towards a predominantly glycolytic metabolism. By comparison, MSCs retained an oxygen consumption rate of ∼98 fmol/cell/h over 21 days of osteogenic culture conditions, indicating that these cells had a more oxidative energy metabolism than the chondrogenic cultures. In conclusion, osteogenic and chondrogenic MSC cultures appear to adopt the balance of oxidative phosphorylation and glycolysis reported for the respective mature cell phenotypes. The addition of TGF-β to chondrogenic pellet cultures significantly enhanced glycosaminoglycan accumulation, but caused no significant effect on cellular oxygen consumption. Thus, the differences between the energy metabolism of chondrogenic and osteogenic cultures may be associated with the culture conditions and not necessarily their respective differentiation.

273 citations


Journal ArticleDOI
TL;DR: Whether IH‐induced expression of Nox2 is mediated by HIF‐1 in the central and peripheral nervous system of mice as well as in cultured cells is investigated and established a pathogenic mechanism linking Hif‐1, ROS generation, and cardiovascular pathology in response to IH.
Abstract: Sleep disordered breathing with recurrent apnea (transient, repetitive cessation of breathing) is a major cause of morbidity and mortality in adult humans (Nieto et al., 2000) and pre-term infants (Poets et al., 1994). Recurrent apneas are associated with periodic decreases in arterial blood oxygen or intermittent hypoxia (IH). Humans with recurrent apnea and rodents exposed to IH exhibit autonomic morbidities including persistent sympathetic activation, hypertension, and elevated circulating catecholamines (Narkiewicz and Somers, 1997; Peppard et al., 2000; Prabhakar and Kumar, 2010). Studies on humans (Narkiewicz and Somers, 1997) and rodent models of IH (Fletcher et al., 1992; Peng et al., 2006) have shown that the carotid body, which is the primary chemoreceptor for detecting changes in arterial PO2, responds to IH by triggering reflex activation of the sympathetic nervous system and enhanced catecholamine secretion from adrenal medullary chromaffin cells (AMC), leading to elevated circulating catecholamines and elevated blood pressure (Bao et al., 1997; Kumar et al., 2006; Souvannakitti et al., 2009). IH increases the levels of reactive oxygen species (ROS) in the carotid body (Peng et al., 2003) and adrenal medulla (Kumar et al., 2006; Souvannakitti et al., 2009). Anti-oxidant treatment prevents increased carotid body function (Peng et al., 2003; Peng and Prabhakar, 2004; Del Rio et al., 2010), augmented catecholamine secretion from AMC (Kumar et al., 2006; Kuri et al., 2007; Souvannakitti et al., 2009), and elevated blood pressure (Peng et al., 2006; Troncoso Brindeiro et al., 2007), indicating that ROS signaling is a critical cellular mechanism underlying IH-evoked autonomic morbidities. NADPH oxidase (Nox) activity is a major source of cellular ROS (Bedard and Krause, 2007). IH leads to increased expression of several Nox isoforms in the carotid body (Peng et al., 2009), AMC (Souvannakitti et al., 2010), and central nervous system (CNS; Zhan et al., 2005) as well as in cultured PC12 rat pheochromocytoma cells, which are derived from AMC (Yuan et al., 2008). Of the various Nox isoforms, Nox2 has been implicated in mediating the effects of IH on carotid body function (Peng et al., 2009), catecholamine secretion from AMC (Souvannakitti et al., 2010), and sleep behavior (Zhan et al., 2005). However, mechanisms underlying increased Nox2 gene expression in response to IH have not been elucidated. The transcriptional activator hypoxia-inducible factor 1 (HIF-1) is a master regulator of O2 homeostasis that controls multiple physiological processes by regulating the expression of hundreds of genes (Mole et al., 2009; Semenza, 2009). HIF-1 is a heterodimeric protein composed of a constitutively expressed HIF-1β subunit and an O2-regulated HIF-1α subunit (Wang et al., 1995). We previously reported that IH increases HIF-1α protein levels in PC12 cell cultures (Yuan et al., 2005, 2008) and in mice (Peng et al., 2006). In catecholamine-producing PC12 cells, the induction of HIF-1α protein levels by IH requires ROS-dependent activation of phospholipase Cγ (PLCγ), protein kinase C (PKC), and mammalian target of rapamycin (mTOR; Yuan et al., 2008). Physiological studies of wild-type (WT) mice exposed to IH revealed striking autonomic morbidities, including heightened carotid body activity, elevated plasma catecholamines, exaggerated hypoxic ventilatory response, and hypertension (Peng et al., 2006). In contrast, littermate Hif1a+/− mice, which are heterozygous for a null [knockout (KO)] allele at the locus encoding HIF-1α, do not display any of these IH-induced autonomic responses (Peng et al., 2006). Furthermore, ROS levels were significantly increased in the CNS of IH-exposed WT mice, but not in Hif1a+/− mice (Peng et al., 2006). Taken together, these results indicated that IH-induced ROS leads to HIF-1 activation, which leads to further ROS generation, thereby creating a feed-forward mechanism that is essential for the pathogenesis of cardiovascular and respiratory abnormalities. Establishing the molecular mechanism by which HIF-1 increases ROS generation is the critical next step in understanding the pathobiology of IH. Based on the observations described above, we tested the hypothesis that in response to IH, HIF-1 increases ROS generation by activation of the Nox2 gene.

186 citations


Journal ArticleDOI
TL;DR: The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage, by promoting the formation of new cementum, alveolar bone, and normal periodontal ligament.
Abstract: Tissue engineering provides a new paradigm for periodontal tissue regeneration in which proper stem cells and effective cellular factors are very important. The objective of this study was, for the first time, to investigate the capabilities and advantages of periodontal tissue regeneration using induced pluripotent stem (iPS) cells and enamel matrix derivatives (EMD). In this study the effect of EMD gel on iPS cells in vitro was first determined, and then tissue engineering technique was performed to repair periodontal defects in three groups: silk scaffold only; silk scaffold + EMD; and silk scaffold + EMD + iPS cells. EMD greatly enhanced the mRNA expression of Runx2 but inhibited the mRNA expression of OC and mineralization nodule formation in vitro. Transplantation of iPS cells showed higher expression levels of OC, Osx, and Runx2 genes, both 12 and 24 days postsurgery. At 24 days postsurgery in the iPS cell group, histological analysis showed much more new alveolar bone and cementum formation with regenerated periodontal ligament between them. The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage. iPS cells combined with EMD provide a valuable tool for periodontal tissue engineering, by promoting the formation of new cementum, alveolar bone, and normal periodontal ligament.

182 citations


Journal ArticleDOI
TL;DR: Results demonstrate human ASCs and BMSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation.
Abstract: Adipose tissue is composed of lipid-filled mature adipocytes and a heterogeneous stromal vascular fraction (SVF) population of cells. Similarly, the bone marrow (BM) is composed of multiple cell types including adipocytes, hematopoietic, osteoprogenitor, and stromal cells necessary to support hematopoiesis. Both adipose and BM contain a population of mesenchymal stromal/stem cells with the potential to differentiate into multiple lineages, including adipogenic, chondrogenic, and osteogenic cells, depending on the culture conditions. In this study we have shown that human adipose-derived stem cells (ASCs) and bone marrow mesenchymal stem cells (BMSCs) populations display a common expression profile for many surface antigens, including CD29, CD49c, CD147, CD166, and HLA-abc. Nevertheless, significant differences were noted in the expression of CD34 and its related protein, PODXL, CD36, CD 49f, CD106, and CD146. Furthermore, ASCs displayed more pronounced adipogenic differentiation capability relative to BMSC based on Oil Red staining (7-fold vs. 2.85-fold induction). In contrast, no difference between the stem cell types was detected for osteogenic differentiation based on Alizarin Red staining. Analysis by RT-PCR demonstrated that both the ASC and BMSC differentiated adipocytes and osteoblast displayed a significant upregulation of lineage-specific mRNAs relative to the undifferentiated cell populations; no significant differences in fold mRNA induction was noted between ASCs and BMSCs. In conclusion, these results demonstrate human ASCs and BMSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation. The findings support the use of both human ASCs and BMSCs for clinical regenerative medicine.

177 citations


Journal ArticleDOI
TL;DR: The results provide strong evidence for a significant effect of Orai3 on BC cell growth in vitro and show that this effect is associated with the induction of cell cycle and apoptosis resistance.
Abstract: Breast cancer (BC) is the leading cancer in the world in terms of incidence and mortality in women. However, the mechanism by which BC develops remains largely unknown. The increase in cytosolic free Ca(2+) can result in different physiological changes including cell growth and death. Orai isoforms are highly Ca(2+) selective channels. In the present study, we analyzed Orai3 expression in normal and cancerous breast tissue samples, and its role in MCF-7 BC and normal MCF-10A mammary epithelial cell lines. We found that the expression of Orai3 mRNAs was higher in BC tissues and MCF-7 cells than in normal tissues and MCF-10A cells. Down-regulation of Orai3 by siRNA inhibited MCF-7 cell proliferation and arrested cell cycle at G1 phase. This phenomenon is associated with a reduction in CDKs 4/2 (cyclin-dependent kinases) and cyclins E and D1 expression and an accumulation of p21(Waf1/Cip1) (a cyclin-dependent kinase inhibitor) and p53 (a tumor-suppressing protein). Orai3 was also involved in MCF-7 cell survival. Furthermore, Orai3 mediated Ca(2+) entry and contributed to intracellular calcium concentration ([Ca(2+)](i)). In MCF-10A cells, silencing Orai3 failed to modify [Ca(2+)](i), cell proliferation, cell-cycle progression, cyclins (D1, E), CDKs (4, 2), and p21(Waf1/Cip1) expression. Our results provide strong evidence for a significant effect of Orai3 on BC cell growth in vitro and show that this effect is associated with the induction of cell cycle and apoptosis resistance. Our study highlights a possible role of Orai3 as therapeutic target in BC therapy.

167 citations


Journal ArticleDOI
TL;DR: Two key signaling pathways involved in the regulation of cell growth are the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways and their abnormal expression can contribute to drug resistance as well as resistance to targeted therapy.
Abstract: Chemotherapy remains a commonly used therapeutic approach for many cancers. Indeed chemotherapy is relatively effective for treatment of certain cancers and it may be the only therapy (besides radiotherapy) that is appropriate for certain cancers. However, a common problem with chemotherapy is the development of drug resistance. Many studies on the mechanisms of drug resistance concentrated on the expression of membrane transporters and how they could be aberrantly regulated in drug resistant cells. Attempts were made to isolate specific inhibitors which could be used to treat drug resistant patients. Unfortunately most of these drug transporter inhibitors have not proven effective for therapy. Recently the possibilities of more specific, targeted therapies have sparked the interest of clinical and basic researchers as approaches to kill cancer cells. However, there are also problems associated with these targeted therapies. Two key signaling pathways involved in the regulation of cell growth are the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways. Dysregulated signaling through these pathways is often the result of genetic alterations in critical components in these pathways as well as mutations in upstream growth factor receptors. Furthermore, these pathways may be activated by chemotherapeutic drugs and ionizing radiation. This review documents how their abnormal expression can contribute to drug resistance as well as resistance to targeted therapy. This review will discuss in detail PTEN regulation as this is a critical tumor suppressor gene frequently dysregulated in human cancer which contributes to therapy resistance. Controlling the expression of these pathways could improve cancer therapy and ameliorate human health.

158 citations


Journal ArticleDOI
TL;DR: Recent progresses of the Hippo pathway are reviewed by focusing on how these proteins communicate with each other and how loss of regulation results in cancers.
Abstract: The Hippo pathway is an evolutionally conserved protein kinase cascade involved in regulating organ size in vivo and cell contact inhibition in vitro by governing cell proliferation and apoptosis. Deregulation of the Hippo pathway is linked to cancer development. Its first core kinase Warts was identified in Drosophila more than 15 years ago, but it gained much attention when other core components of the pathway were identified 8 years later. Major discoveries of the pathway were made during past several years. The core kinase components Hippo, Salvador, Warts, and Mats in the fly and Mst1/2, WW45, Lats1/2, and Mob1 in mammals phosphorylate and inactivate downstream transcriptional co-activators Yorkie in the fly, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) in mammals, respectively. Phosphorylated Yorkie, YAP, and TAZ are sequestered in the cytoplasm by interaction with 14-3-3 proteins. Here we review recent progresses of this pathway by focusing on how these proteins communicate with each other and how loss of regulation results in cancers. J. Cell. Physiol. 226: 928–939, 2011. © 2010 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It is shown that lipid raft localization of EGFR correlates with resistance to EGFR TKI‐induced growth inhibition and pharmacological depletion of cholesterol from lipid rafts decreases this resistance in breast cancer cell lines, and evidence is presented to suggest that when EGFR localizes to cholesterol rafts, these rafts provide a platform to facilitate activation of Akt signaling in the absence of EG FR kinase activity.
Abstract: Epidermal growth factor receptor (EGFR) is overexpressed in many cancer types including ∼30% of breast cancers. Several small molecule tyrosine kinase inhibitors (TKIs) targeting EGFR have shown clinical efficacy in lung and colon cancers, but no benefit has been noted in breast cancer. Thirteen EGFR expressing breast cancer cell lines were analyzed for response to EGFR TKIs. Seven were found to be EGFR TKI resistant; while shRNA knockdown of EGFR determined that four of these cell lines retained the requirement of EGFR protein expression for growth. Interestingly, EGFR localized to plasma membrane lipid rafts in all four of these EGFR TKI resistant cell lines, as determined by biochemical raft isolation and immunofluorescence. When lipid rafts were depleted of cholesterol using lovastatin, all four cell lines were sensitized to EGFR TKIs. In fact, the effects of the cholesterol biosynthesis inhibitors and gefitinib were synergistic. While gefitinib effectively abrogated phosphorylation of Akt and MAPK in an EGFR TKI sensitive cell line, phosphorylation of Akt persisted in two EGFR TKI resistant cell lines; however, this phosphorylation was abrogated by lovastatin treatment. Thus, we have shown that lipid raft localization of EGFR correlates with resistance to EGFR TKI-induced growth inhibition and pharmacological depletion of cholesterol from lipid rafts decreases this resistance in breast cancer cell lines. Furthermore, we have presented evidence to suggest that when EGFR localizes to lipid rafts, these rafts provide a platform to facilitate activation of Akt signaling in the absence of EGFR kinase activity.

Journal ArticleDOI
TL;DR: It is suggested that gingival tissue contains tissue‐specific mesenchymal stem cell population and is an ideal resource for immunoregulatory therapy due to its substantial availability and accessibility.
Abstract: Human gingiva plays an important role in the maintenance of oral health and shows unique fetal-like scarless healing process after wounding. Here we isolate and characterize mesenchymal stem cells from human normal and hyperplastic gingival tissues (N-GMSC and H-GMSC, respectively). Immunocytochemical staining indicated that gingival lamina propria contained Stro-1 and SSEA-4 positive cells, implying existence of putative gingival MSC. Under attachment-based isolating and culturing condition, gingival MSC displayed highly clonogenic and long-term proliferative capability. By using single colony isolation and expansion approaches, we found both N-GMSC and H-GMSC possessed self-renewal and multipotent differentiation properties. N-GMSC and H-GMSC showed distinct immunoregulatory functions in a murine skin allograft setting via up-regulation of putative systemic regulatory T cells (Tregs). N-GMSC and H-GMSC were capable of regenerating collagenous tissue following in vivo transplantation, in which H-GMSC exhibited more robust regenerative capability. These findings suggest that gingival tissue contains tissue-specific mesenchymal stem cell population and is an ideal resource for immunoregulatory therapy due to its substantial availability and accessibility. In addition, gingival MSC over-activation may contribute to gingival hyperplastic phenotype.

Journal ArticleDOI
TL;DR: Results demonstrate LPS stimulates proinflammatory cytokine expression in dermal fibroblasts and MyD88 siRNA eliminates the expression, and controlling inflammation and manipulating TLR signaling in skin cells may result in novel treatment strategies for HTS and other FPD.
Abstract: Hypertrophic scar (HTS), a fibroproliferative disorder (FPD), complicates burn wound healing. Although the pathogenesis is not understood, prolonged inflammation is a known contributing factor. Emerging evidence suggests that fibroblasts regulate immune/inflammatory responses through toll-like receptor 4 (TLR4) activated by lipopolysaccharide (LPS) through adaptor molecules, leading to nuclear factor kappa-light-chain-enhancer of activated B cells and mitogen-activated protein kinases activation, cytokine gene transcription and co-stimulatory molecule expression resulting in inflammation. This study explored the possible role of TLR4 in HTS formation. Paired normal and HTS tissue from burn patients was collected and dermal fibroblasts isolated and cultured. Immunohistochemical analysis of tissues demonstrated increased TLR4 staining in HTS tissue. Quantitative RT-PCR of three pairs of fibroblasts demonstrated mRNA levels for TLR4 and its legend myeloid differentiation factor 88 (MyD88) in HTS fibroblasts were increased significantly compared with normal fibroblasts. Flow cytometry showed increased TLR4 expression in HTS fibroblasts compared with normal. ELISA demonstrated protein levels for prostaglandin E2, interleukin (IL)-6, IL-8 and monocyte chemotactic protein-1 (MCP-1) were significantly increased in HTS fibroblasts compared to normal. When paired normal and HTS fibroblasts were stimulated with LPS, significant increases in mRNA and protein levels for MyD88, IL-6, IL-8, and MCP-1 were detected. However, when transfected with MyD88 small interfering RNA (siRNA), then stimulated with LPS, a significant decrease in mRNA and protein levels for these molecules compared to only LPS-stimulated fibroblasts was detected. In comparison, a scramble siRNA transfection did not affect mRNA or protein levels for these molecules. Results demonstrate LPS stimulates proinflammatory cytokine expression in dermal fibroblasts and MyD88 siRNA eliminates the expression. Therefore, controlling inflammation and manipulating TLR signaling in skin cells may result in novel treatment strategies for HTS and other FPD.

Journal ArticleDOI
TL;DR: The data suggest that LfR is a major pathway through which Lf is taken up by enterocytes, which occurs independently of iron saturation through clathrin‐mediated endocytosis.
Abstract: Lactoferrin (Lf) is a major iron-binding and multi-functional protein in exocrine fluids such as breast milk and mucosal secretions. The functions of Lf appear dependent upon the iron saturation of the Lf protein and are postulated to be mediated through Lf internalization by a Lf receptor (LfR). However, mechanisms by which LfR mediates Lf internalization in enterocytes are unknown. We now demonstrate that a LfR previously cloned from the small intestine mediates Lf endocytosis in a human enterocyte model (Caco-2 cells). LfR was detected at the plasma membrane by cell surface biotinylation; both apo-Lf and holo-Lf uptake were significantly inhibited in cells transfected with LfR siRNA. Treatments of hypertonic sucrose and clathrin siRNA and co-immunoprecipitation of LfR with clathrin adaptor AP2 indicate that LfR regulates Lf endocytosis via clathrin-mediated endocytosis. Although both iron-free Lf (apo-Lf) and iron-saturated Lf (holo-Lf) enter Caco-2 cells via a similar mechanism and no significant differences were observed in the binding and uptake of apo- and holo-Lf in Caco-2 cells, apo-Lf but not holo-Lf stimulates proliferation of Caco-2 cells. Interestingly, apo-Lf stimulated extracellular signal-regulated mitogen-activated protein kinase (ERK) cascade to a significantly greater extent than holo-Lf and the apo-Lf induced proliferation was significantly inhibited by an ERK cascade inhibitor (U0126) and clathrin siRNA. Taken together, our data suggest that LfR is a major pathway through which Lf is taken up by enterocytes, which occurs independently of iron saturation through clathrin-mediated endocytosis. The differential effects of apo- and holo-Lf are not due to differences in cellular internalization mechanisms.

Journal ArticleDOI
TL;DR: MSCs are revealed as robust sources of TIMP‐mediated MMP‐inhibition, capable of protecting the perivascular niche from high levels of MMPs even under pathological conditions.
Abstract: Mesenchymal stem cells (MSCs) have been shown to be perivascular, occupying a prime location for regulating vessel stability. Here, we focused on the MSC-contribution of key regulators of the perivascular niche, the matrix metalloproteinases (MMPs) and their inhibitors, the TIMPs. Despite secretion of active forms of MMPs by MSCs, MMP enzyme activity was not detected in MSC-conditioned medium (MSC-CM) due to TIMP-mediated inhibition. By means of bifunctional-crosslinking to probe endogenous MMP:TIMP interactions, we showed MMP-2-inhibition by TIMP-2. MSCs also inhibited high levels of exogenous MMP-2 and MMP-9 through TIMP-2 and TIMP-1, respectively. Furthermore, MSC-CM protected vascular matrix molecules and endothelial cell structures from MMP-induced disruption. MSCs remained matrix-protective when exposed to pro-inflammatory cytokines and hypoxia, countering these stresses with increased TIMP-1 expression and augmented MMP-inhibition. Thus, MSCs are revealed as robust sources of TIMP-mediated MMP-inhibition, capable of protecting the perivascular niche from high levels of MMPs even under pathological conditions. J. Cell. Physiol. 226: 385–396, 2011. © 2010 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: This study suggests that the vorinostat/gefitinib combination represents a promising therapeutic strategy that warrants further clinical evaluation in SCCHN, including tumors intrinsically resistant to EGFR‐inhibitors.
Abstract: Potentiation of epidermal growth factor receptor (EGFR) inhibitors is required in squamous cell carcinoma of head and neck (SCCHN) to improve their therapeutic index. We demonstrated that the histone deacetylase inhibitor vorinostat in combination with the EGFR tyrosine kinase inhibitor gefitinib induced synergistic inhibition of proliferation, migration, and invasion as well as induction of apoptosis in SCCHN cells, including cells resistant to gefitinib. We provided evidence suggesting that differential modulation of ErbB receptors together with reversion of epithelial-to-mesenchymal transition (EMT) by vorinostat represent mechanistic bases for the observed synergism. We demonstrated in epithelial CAL27 cells expressing EGFR, ErbB2, and ErbB3 that vorinostat downregulated the expression and signaling of all three receptors. In gefitinib-resistant KB and Hep-2 cells, both of which had undergone EMT and expressed very low levels of ErbB3, vorinostat reverted the mesenchymal phenotype by inducing both E-cadherin and ErbB3 and downregulating vimentin as well as EGFR and ErbB2. Both transcriptional and post-translational mechanisms were involved in the modulation of ErbB receptors by vorinostat. Attenuation of all ErbB transcripts in CAL27 cells as well as induction of ErbB3 transcript in Hep-2 and KB cells was seen upon vorinostat treatment. We showed that vorinostat induced ubiquitination of EGFR and ErbB2 and targeted them predominantly to lysosome-degradation in all cell lines, while the induction of ErbB3-ubiquitination in CAL27 cells led to proteasomes-degradation. Overall, this study suggests that the vorinostat/gefitinib combination represents a promising therapeutic strategy that warrants further clinical evaluation in SCCHN, including tumors intrinsically resistant to EGFR-inhibitors. J. Cell. Physiol. 226: 2378–2390, 2011. © 2010 Wiley-Liss, Inc.

Journal ArticleDOI
Lin Li1, Hui Tian1, Weiming Yue1, Feng Zhu1, Shuhai Li1, Wenjun Li1 
TL;DR: HMSCs have a contradictory effect on tumor cell growth between in vitro and in vivo, and therefore, the exploitation of hMSCs in new therapeutic strategies should be cautious under the malignant conditions.
Abstract: Nowadays, some evidences demonstrate that human mesenchymal stem cells (hMSCs) favor tumor growth; however, others show that hMSCs can suppress tumorigenesis and tumor growth. With the indeterminateness of the effect of hMSCs on tumors, we investigated the effect of hMSCs on lung cancer cell line A549 and esophageal cancer cell line Eca-109 in vitro and in vivo. Our results revealed that hMSCs inhibited the proliferation and invasion of A549 and Eca-109 cells, arrested tumor cells in the G1 phase of the cell cycle and induced the apoptosis of tumor cells in vitro by using a co-culture system and the hMSCs-conditioned medium. However, animal study showed that hMSCs enhanced tumor formation and growth in vivo. Western blotting and immunoprecipitation data showed that the expressions of proliferating cell nuclear antigen (PCNA), Cyclin E, phospho-retinoblastoma protein (pRb), B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-xL, and matrix metalloproteinase 2 (MMP-2) were downregulated and the formation of Cyclin E-cyclin-dependent kinase 2 (CDK2) complexes was inhibited in the tumor cells treated with the hMSCs-conditioned medium. According to the observation of tumor mass and the result of microvessel density (MVD), we found that the promoting role of hMSCs on tumor growth was related with the increase of tumor vessel formation. Our present study suggests that hMSCs have a contradictory effect on tumor cell growth between in vitro and in vivo, and therefore, the exploitation of hMSCs in new therapeutic strategies should be cautious under the malignant conditions. J. Cell. Physiol. 226: 1860–1867, 2011. © 2010 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It is shown that RANK is expressed by solid tumors, with high concordance between bone metastasis and corresponding primary tumor, which highlights the central role of RANK/RANKL/OPG pathway as potential therapeutic target not only inBone metastasis management, but also in the adjuvant setting.
Abstract: Receptor activator of NFκB ligand (RANKL), RANK, and osteoprotegerin (OPG) represent the key regulators of bone metabolism both in normal and pathological conditions, including bone metastases. To our knowledge, no previous studies investigated and compared RANK expression in primary tumors and in bone metastases from the same patient. We retrospectively examined RANK expression by immunohistochemistry in 74 bone metastases tissues from solid tumors, mostly breast, colorectal, renal, lung, and prostate cancer. For 40 cases, tissue from the corresponding primary tumor was also analyzed. Sixty-six (89%) of the 74 bone metastases were RANK-positive and, among these, 40 (59.5%) showed more than 50% of positive tumor cells. The median percentage of RANK-positive cells was 60% in primary tumors and metastases, without any statistically significant difference between the two groups (P=0.194). The same percentage was obtained by considering only cases with availability of samples both from primary and metastasis. Our study shows that RANK is expressed by solid tumors, with high concordance between bone metastasis and corresponding primary tumor. These data highlight the central role of RANK/RANKL/OPG pathway as potential therapeutic target not only in bone metastasis management, but also in the adjuvant setting.

Journal ArticleDOI
TL;DR: Study of the roles and mechanisms of TGF‐β1‐induced Smad and p38 mitogen‐activated protein kinase (MAPK) signaling in EMT‐related changes in pulmonary epithelial cells demonstrates that Smads and p 38 MAPK differentially regulate EMT-related changesIn pulmonary epithelium.
Abstract: Idiopathic pulmonary fibrosis is characterized by myofibroblast accumulation, extracellular matrix (ECM) remodeling, and excessive collagen deposition. ECM-producing myofibroblasts may originate from epithelial cells through epithelial to mesenchymal transition (EMT). TGF-β1 is an inducer of EMT in pulmonary epithelial cells in vitro and in vivo, though the mechanisms are unclear. We hypothesized that TGF-β1 induced EMT through Smad-dependent and -independent processes. To test this hypothesis, we studied the roles and mechanisms of TGF-β1-induced Smad and p38 mitogen-activated protein kinase (MAPK) signaling in EMT-related changes in pulmonary epithelial cells. Exposure of pulmonary epithelial 1HAEo(-) cells to TGF-β1 resulted in morphological and molecular changes of EMT over a 96-h period; loss of cell-cell contact, cell elongation, down-regulation of E-cadherin, up-regulation of fibronectin, and up-regulation of collagen I. Both Smad2/3 and p38 MAPK signaling pathways were activated by TGF-β1. However, neither Smad2/3 nor p38 MAPK were required for the down-regulation of E-cadherin, yet p38 MAPK was associated with fibronectin up-regulation. Both Smad2/3 and p38 MAPK had a role in regulation of TGF-β1-induced collagen expression. Furthermore, these data demonstrate that Smads and p38 MAPK differentially regulate EMT-related changes in pulmonary epithelial cells.

Journal ArticleDOI
TL;DR: It is shown that gliomas are attracted in a chemotactic manner to epidermal growth factor (EGF) and TRPC1 channel association with lipid rafts is essential for glioma chemotaxis in response to stimuli, such as EGF.
Abstract: The majority of malignant primary brain tumors are gliomas, derived from glial cells. Grade IV gliomas, Glioblastoma multiforme, are extremely invasive and the clinical prognosis for patients is dismal. Gliomas utilize a number of proteins and pathways to infiltrate the brain parenchyma including ion channels and calcium signaling pathways. In this study, we investigated the localization and functional relevance of transient receptor potential canonical (TRPC) channels in glioma migration. We show that gliomas are attracted in a chemotactic manner to epidermal growth factor (EGF). Stimulation with EGF results in TRPC1 channel localization to the leading edge of migrating D54MG glioma cells. Additionally, TRPC1 channels co-localize with the lipid raft proteins, caveolin-1 and β-cholera toxin, and biochemical assays show TRPC1 in the caveolar raft fraction of the membrane. Chemotaxis toward EGF was lost when TRPC channels were pharmacologically inhibited or by shRNA knockdown of TRPC1 channels, yet without affecting unstimulated cell motility. Moreover, lipid raft integrity was required for gliomas chemotaxis. Disruption of lipid rafts not only impaired chemotaxis but also impaired TRPC currents in whole cell recordings and decreased store-operated calcium entry as revealed by ratiomeric calcium imaging. These data indicated that TRPC1 channel association with lipid rafts is essential for glioma chemotaxis in response to stimuli, such as EGF.

Journal ArticleDOI
TL;DR: The microvillar mechanisms of audioreceptor, photoresceptor, and olfactory/taste receptor cells are discussed as highly specialized adaptations of a general type of microVillar mechanisms involved in regulation of important basic cell functions such as glucose transport/energy metabolism, ion channel regulation, generation and modulation of the membrane potential, volume regulation, and Ca signaling.
Abstract: Until now, the general importance of microvilli present on the surface of almost all differentiated cells has been strongly underestimated and essential functions of these abundant surface organelles remained unrecognized. Commonly, the role of microvilli has been reduced to their putative function of cell-surface enlargement. In spite of a large body of detailed knowledge about the specific functions of microvilli in sensory receptor cells for sound, light, and odor perception, their functional importance for regulation of basic cell functions remained obscure. Here, a number of microvillar mechanisms involved in fundamental cell functions are discussed. Two structural features enable the extensive functional competence of microvilli: First, the exclusive location of almost all functional important membrane proteins on microvilli of differentiated cells and second, the function of the F-actin-based cytoskeletal core of microvilli as a structural diffusion barrier modulating the flow of low molecular substrates and ions into and out of the cell. The specific localization on microvilli of important functional membrane proteins such as glucose transporters, ion channels, ion pumps, and ion exchangers indicate the importance and diversity of microvillar functions. In this review, the microvillar mechanisms of audioreceptor, photoreceptor, and olfactory/taste receptor cells are discussed as highly specialized adaptations of a general type of microvillar mechanisms involved in regulation of important basic cell functions such as glucose transport/energy metabolism, ion channel regulation, generation and modulation of the membrane potential, volume regulation, and Ca signaling. Even the constitutive cellular defence against cytotoxic compounds, also called "multidrug resistance (MDR)," is discussed as a microvillar mechanism. A comprehensive examination of the specific properties of "cable-like" ion conduction along the microvillar core structure of F-actin allows the proposal that microvilli are specifically designed for using ionic currents as cellular signals. In view of the multifaceted gating and signaling properties of TRP channels, the possible role of microvilli as a universal gating device for TRP channel regulation is discussed. Combined with the role of the microvillar core bundle of actin filaments as high-affinity Ca store, microvilli may turn out as highly specialized Ca signaling organelle involved in store-operated Ca entry (SOCE) and initiation of nonlinear Ca signals such as waves and oscillations.

Journal ArticleDOI
TL;DR: qRT‐PCR evaluation and analysis demonstrated that traditionally used reference genes, such as 18s RNA, β‐actin, and GAPDH, are not reliable reference genes for pharmacogenomics and toxicogenomics studies, and hTBCA and small RNAs are more stable during drug treatment, and they are better reference genes in pharmacogenetics and toxicgenomics studies.
Abstract: Pharmacogenomics, toxicogenomics, and small RNA expression analysis are three of the most active research topics in the biological, biomedical, pharmaceutical, and toxicological fields. All of these studies are based on gene expression analysis, which requires reference genes to reduce the variations derived from different amounts of starting materials and different efficiencies of RNA extraction and cDNA synthesis. Thus, accurate normalization to one or several constitutively expressed reference genes is a prerequisite to valid gene expression studies. Although selection of reliable reference genes has been conducted in previous studies in several animals and plants, no research has been focused on pharmacological targets, and very few studies have had a toxicological context. More interestingly, no studies have been performed to identify reference genes for small RNA analysis although small RNA, particularly microRNA (miRNA)-related research is currently one of the fastest-moving topics. In this study, using MCF-7 breast cancer cells as a model, we employed quantitative real-time PCR (qRT-PCR), one of the most reliable methods for gene expression analysis in many research fields, to evaluate and to determine the most reliable reference genes for pharmacogenomics and toxicogenomics studies as well as for small RNA expression analysis. We tested the transcriptional expression of five protein-coding genes as well as five non-coding genes in MCF-7 cells treated with five different pharmaceuticals or toxicants [paclitaxel (PTX), gossypol (GOS), methyl jasmonate (JAS), L-nicotine (NIC), and melamine (mela)] and analyzed the stability of the selected reference genes by four different methods: geNorm, NormFinder, BestKeeper, and the comparative ΔCt method. According to our analysis, a protein-coding gene, hTBCA and four non-coding genes, hRNU44, hRNU48, hU6, and hRNU47, appear to be the most reliable reference genes for the five chemical treatments. Similar results were also obtained in dose-response and time-course assays with gossypol (GOS) treatment. Our results demonstrated that traditionally used reference genes, such as 18s RNA, β-actin, and GAPDH, are not reliable reference genes for pharmacogenomics and toxicogenomics studies. In contrast, hTBCA and small RNAs are more stable during drug treatment, and they are better reference genes for pharmacogenomics and toxicogenomics studies. To widely use these genes as reference genes, these results should be corroborated by studies with other human cell lines and additional drugs classes and hormonal treatments.

Journal ArticleDOI
TL;DR: LSS75 induced a specific change in behavior, modifying gene expression, reducing ROS levels, altering MAP kinase signaling and reducing cAMP levels, opening multiple avenues for future study.
Abstract: Most acute coronary events occur in the upstream region of stenotic atherosclerotic plaques that experience laminar shear stress (LSS) elevated above normal physiological levels. Many studies have described the atheroprotective effect on endothelial behavior of normal physiological LSS (approximately 15 dynes/cm2) compared to static or oscillatory shear stress (OSS), but it is unknown whether the levels of elevated shear stress imposed by a stenotic plaque would preserve, enhance or reverse this effect. Therefore we used transcriptomics and related functional analyses to compare human endothelial cells exposed to laminar shear stress of 15 (LSS15-normal) or 75 dynes/cm2 (LSS75-elevated). LSS75 upregulated expression of 145 and downregulated expression of 158 genes more than twofold relative to LSS15. Modulation of the metallothioneins (MT1-G, -M, -X) and NADPH oxidase subunits (NOX2, NOX4, NOX5, and p67phox) accompanied suppression of reactive oxygen species production at LSS75. Shear induced changes in dual specificity phosphatases (DUSPs 1, 5, 8, and 16 increasing and DUSPs 6 and 23 decreasing) were observed as well as reduced ERK1/2 but increased p38 MAP kinase phosphorylation. Amongst vasoactive substances, endothelin-1 expression decreased whereas vasoactive intestinal peptide (VIP) and prostacyclin expression increased, despite which intracellular cAMP levels were reduced. Promoter analysis by rVISTA identified a significant over representation of ATF and Nrf2 transcription factor binding sites in genes upregulated by LSS75 compared to LSS15. In summary, LSS75 induced a specific change in behavior, modifying gene expression, reducing ROS levels, altering MAP kinase signaling and reducing cAMP levels, opening multiple avenues for future study. J. Cell. Physiol. 226: 2841–2848, 2011. © 2011 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: BCAR4 is a strong transforming gene causing estrogen‐independent growth and antiestrogen resistance, and induces tumor formation in vivo, and may be a good target for treatingAntiestrogen‐resistant breast cancer.
Abstract: Resistance to the antiestrogen tamoxifen remains a major problem in the management of estrogen receptor-positive breast cancer. Knowledge on the resistance mechanisms is needed to develop more effective therapies. Breast cancer antiestrogen resistance 4 (BCAR4) was identified in a functional screen for genes involved in tamoxifen resistance. BCAR4 is expressed in 27% of primary breast tumors. In patients treated with tamoxifen for metastized disease high BCAR4 mRNA levels are associated with reduced clinical benefit and progression-free survival. Regarding tumor aggressiveness high BCAR4 mRNA levels are associated with a shorter metastasis free survival and overall survival. In the present study, we investigated the role of BCAR4 in endocrine resistance. Forced expression of BCAR4 in human ZR-75-1 and MCF7 breast cancer cells resulted in cell proliferation in the absence of estrogen and in the presence of various antiestrogens. Inhibition of estrogen receptor 1 (ESR1) expression with small interfering RNA (siRNA), implied that the BCAR4-induced mechanism of resistance is independent of ESR1. Highly conserved BCAR4 homologues of rhesus monkey, green monkey, and the less conserved common marmoset gene induced tamoxifen-resistant cell proliferation, in contrast to the distant BCAR4 homologues of bovine and rabbit. Injection of BCAR4-expressing ZR-75-1 cells into nude mice resulted in rapidly growing tumors. In silico analysis showed that BCAR4 mRNA is highly expressed in human placenta and oocyte, and absent in other normal tissues. In conclusion, BCAR4 is a strong transforming gene causing estrogen-independent growth and antiestrogen resistance, and induces tumor formation in vivo. Due to its restricted expression, BCAR4 may be a good target for treating antiestrogen-resistant breast cancer.

Journal ArticleDOI
TL;DR: It is hypothesized that αVβ3 activation can maintain chronic inflammatory processes in pathological conditions and that the loss of αV β3 ligation will allow macrophages to escape from the inflammatory state.
Abstract: Controlling macrophage responses to pathogenic stimuli is critical for prevention of and recovery from the inflammatory state associated with the pathogenesis of many diseases. The adhesion receptor αVβ3 integrin is thought to be an important receptor that regulates macrophage differentiation and macrophage responses to external signaling, but it has not been previously identified as a contributor to macrophage-related inflammation. Using an in vitro model of human blood monocytes (Mo) and monocyte-derived macrophages (MDMs) we demonstrate that αVβ3 ligation results in sustained increases of the transcription factor NF-κB DNA-binding activity, as compared with control isotype-matched IgG1. Activation of NF-κB parallels the increase of NF-κB-dependent pro-inflammatory cytokine mRNA expression in MDMs isolated from individual donors, for example, TNF-α (8- to 28-fold), IL-1β (15- to 30-fold), IL-6 (2- to 4-fold), and IL-8 (5- to 15-fold) whereas there is more than a 10-fold decrease in IL-10 mRNA level occurs. Upon ligation of the αVβ3 receptor, treatment with TNF-α (10 ng/ml) or LPS (200 ng/ml, 1,000 EU) results in the enhanced and synergistic activation of NF-κB and LPS-induced TNF-α secretion. As additional controls, an inhibitor of αVβ3 integrin, cyclic RGD (10 μg/ml; IC50 = 7.6 μM), attenuates the effects of αVβ3 ligation, and the natural ligand of αVβ3 integrin, vitronectin, reproduces the effects of αVβ3 activation by an immobilizing anti-αVβ3 integrin mAb. We hypothesize that αVβ3 activation can maintain chronic inflammatory processes in pathological conditions and that the loss of αVβ3 ligation will allow macrophages to escape from the inflammatory state.

Journal ArticleDOI
TL;DR: Transforming growth factor‐β (TGF‐β) has been reviewed for its sources, types of isoforms, biochemical effects on cartilage formation/repair, and its possible clinical applications, and their biochemical characterization revealed mainly their homo‐dimer nature.
Abstract: Transforming growth factor-β (TGF-β) has been reviewed for its sources, types of isoforms, biochemical effects on cartilage formation/repair, and its possible clinical applications. Purification of three isoforms (TGF-β-1, β-2 and β-3) and their biochemical characterization revealed mainly their homo-dimer nature, with heterodimers in traces, each monomer comprised of 112 amino acids and MW. of 12 500 Da. While histo-chemical staining by a variety of dyes has revealed precise localization of TGF-β in tissues, immune-blot technique has thrown light on their expression as a function of age (neonatal vs. adult), as also on its quantum in an active and latent state. X-ray crystallographic studies and nuclear magnetic resonance (NMR) analysis have unraveled mysteries of their three-dimensional structures, essential for understanding their functions. Their similarities have led to interchangeability in assays, while differences have led to their specialized clinical applicability. For this purpose, their latent (inactive) form is changed to an active form through enzymatic processes of phosphorylation/glycosylation/transamination/proteolytic degradation. Their functions encompass differentiation and de-differentiation of chondrocytes, synthesis of collagen and proteoglycans (PGs) and thereby maintain homeostasis of cartilage in several degenerative diseases and repair through cell cycle signaling and physiological control. While several factors affecting their performance are already identified, their interplay and chronology of sequences of functions is yet to be understood. For its success in clinical applications, challenges in judicious dealing with the factors and their interplay need to be understood. J. Cell. Physiol. 226: 3094–3103, 2011. © 2011 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: Investigation of the characteristics of peripheral nerve pericytes may provide novel strategies for modifying BNB functions and promoting peripheral nerve regeneration, because the BNB does not contain cells equivalent to astrocytes which regulate the BBB function.
Abstract: The objectives of this study were to establish pure blood-nerve barrier (BNB) and blood-brain barrier (BBB)-derived pericyte cell lines of human origin and to investigate their unique properties as barrier-forming cells. Brain and peripheral nerve pericyte cell lines were established via transfection with retrovirus vectors incorporating human temperature-sensitive SV40 T antigen (tsA58) and telomerase. These cell lines expressed several pericyte markers such as α-smooth muscle actin, NG2, platelet-derived growth factor receptor β, whereas they did not express endothelial cell markers such as vWF and PECAM. In addition, the inulin clearance was significantly lowered in peripheral nerve microvascular endothelial cells (PnMECs) through the up-regulation of claudin-5 by soluble factors released from brain or peripheral nerve pericytes. In particular, bFGF secreted from peripheral nerve pericytes strengthened the barrier function of the BNB by increasing the expression of claudin-5. Peripheral nerve pericytes may regulate the barrier function of the BNB, because the BNB does not contain cells equivalent to astrocytes which regulate the BBB function. Furthermore, these cell lines expressed several neurotrophic factors such as NGF, BDNF, and GDNF. The secretion of these growth factors from peripheral nerve pericytes might facilitate axonal regeneration in peripheral neuropathy. Investigation of the characteristics of peripheral nerve pericytes may provide novel strategies for modifying BNB functions and promoting peripheral nerve regeneration.

Journal ArticleDOI
TL;DR: Functional data demonstrate that PKCι is required for the transformed phenotype of lung, pancreatic, ovarian, prostate, colon, and brain cancer cells, and recent studies in a genetic model of lung adenocarcinoma suggest a role for PKCα in transformation of lung cancer stem cells, which has important implications for the therapeutic use of aurothiomalate (ATM).
Abstract: Accumulating evidence demonstrates that PKCι is an oncogene and prognostic marker that is frequently targeted for genetic alteration in many major forms of human cancer. Functional data demonstrate that PKCι is required for the transformed phenotype of lung, pancreatic, ovarian, prostate, colon, and brain cancer cells. Future studies will be required to determine whether PKCι is also an oncogene in the many other cancer types that also overexpress PKCι. Studies of PKCι using genetically defined models of tumorigenesis have revealed a critical role for PKCι in multiple stages of tumorigenesis, including tumor initiation, progression, and metastasis. Recent studies in a genetic model of lung adenocarcinoma suggest a role for PKCι in transformation of lung cancer stem cells. These studies have important implications for the therapeutic use of aurothiomalate (ATM), a highly selective PKCι signaling inhibitor currently undergoing clinical evaluation. Significant progress has been made in determining the molecular mechanisms by which PKCι drives the transformed phenotype, particularly the central role played by the oncogenic PKCι-Par6 complex in transformed growth and invasion, and of several PKCι-dependent survival pathways in chemo-resistance. Future studies will be required to determine the composition and dynamics of the PKCι-Par6 complex, and the mechanisms by which oncogenic signaling through this complex is regulated. Likewise, a better understanding of the critical downstream effectors of PKCι in various human tumor types holds promise for identifying novel prognostic and surrogate markers of oncogenic PKCι activity that may be clinically useful in ongoing clinical trials of ATM.

Journal ArticleDOI
TL;DR: It is shown for the first time that human hepatocytes may respond to TGF‐β inducing different signals, some of them might contribute to tumor suppression and apoptosis, but others should mediate liver tumor progression and invasion (EMT and acquisition of a stem‐like phenotype).
Abstract: Transforming growth factor-beta (TGF-β) mediates several and sometime opposite effects in epithelial cells, inducing growth inhibition, and apoptosis but also promoting an epithelial to mesenchymal ...