scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Psychiatry in 2008"


Journal ArticleDOI
TL;DR: A neural model of emotion regulation that includes neural systems implicated in different voluntary and automatic emotion regulatory subprocesses is developed and used as a theoretical framework to examine functional neural abnormalities in these neural systems that may predispose to the development of a major psychiatric disorder, bipolar disorder.
Abstract: The ability to regulate emotions is an important part of adaptive functioning in society. Advances in cognitive and affective neuroscience and biological psychiatry have facilitated examination of neural systems that may be important for emotion regulation. In this critical review we first develop a neural model of emotion regulation that includes neural systems implicated in different voluntary and automatic emotion regulatory subprocesses. We then use this model as a theoretical framework to examine functional neural abnormalities in these neural systems that may predispose to the development of a major psychiatric disorder characterized by severe emotion dysregulation, bipolar disorder.

1,258 citations


Journal ArticleDOI
TL;DR: A comparison of the strongest associations with the genome-wide scan of 1868 patients with BP disorder and 2938 controls who completed the scan as part of the Wellcome Trust Case–Control Consortium indicates concordant signals for SNPs within the voltage-dependent calcium channel, L-type, alpha 1C subunit (CACNA1C) gene.
Abstract: We performed a genome-wide association scan in 1461 patients with bipolar (BP) 1 disorder, 2008 controls drawn from the Systematic Treatment Enhancement Program for Bipolar Disorder and the University College London sample collections with successful genotyping for 372,193 single nucleotide polymorphisms (SNPs). Our strongest single SNP results are found in myosin5B (MYO5B; P=1.66 x 10(-7)) and tetraspanin-8 (TSPAN8; P=6.11 x 10(-7)). Haplotype analysis further supported single SNP results highlighting MYO5B, TSPAN8 and the epidermal growth factor receptor (MYO5B; P=2.04 x 10(-8), TSPAN8; P=7.57 x 10(-7) and EGFR; P=8.36 x 10(-8)). For replication, we genotyped 304 SNPs in family-based NIMH samples (n=409 trios) and University of Edinburgh case-control samples (n=365 cases, 351 controls) that did not provide independent replication after correction for multiple testing. A comparison of our strongest associations with the genome-wide scan of 1868 patients with BP disorder and 2938 controls who completed the scan as part of the Wellcome Trust Case-Control Consortium indicates concordant signals for SNPs within the voltage-dependent calcium channel, L-type, alpha 1C subunit (CACNA1C) gene. Given the heritability of BP disorder, the lack of agreement between studies emphasizes that susceptibility alleles are likely to be modest in effect size and require even larger samples for detection.

700 citations


Journal ArticleDOI
TL;DR: This first genome-wide association study of bipolar disorder shows that several genes, each of modest effect, reproducibly influence disease risk and may be a polygenic disease.
Abstract: The genetic basis of bipolar disorder has long been thought to be complex, with the potential involvement of multiple genes, but methods to analyze populations with respect to this complexity have only recently become available. We have carried out a genome-wide association study of bipolar disorder by genotyping over 550 000 single-nucleotide polymorphisms (SNPs) in two independent case-control samples of European origin. The initial association screen was performed using pooled DNA, and selected SNPs were confirmed by individual genotyping. While DNA pooling reduces power to detect genetic associations, there is a substantial cost saving and gain in efficiency. A total of 88 SNPs, representing 80 different genes, met the prior criteria for replication in both samples. Effect sizes were modest: no single SNP of large effect was detected. Of 37 SNPs selected for individual genotyping, the strongest association signal was detected at a marker within the first intron of diacylglycerol kinase eta (DGKH; P=1.5 × 10−8, experiment-wide P<0.01, OR=1.59). This gene encodes DGKH, a key protein in the lithium-sensitive phosphatidyl inositol pathway. This first genome-wide association study of bipolar disorder shows that several genes, each of modest effect, reproducibly influence disease risk. Bipolar disorder may be a polygenic disease.

686 citations


Journal ArticleDOI
TL;DR: Elevation in brain IL-1 levels, which characterizes many medical conditions, is both necessary and sufficient for producing the high incidence of depression found in these conditions, and procedures aimed at reducing brain IL -1 levels may have potent antidepressive actions.
Abstract: Several lines of evidence implicate the pro-inflammatory cytokine interleukin-1 (IL-1) in the etiology and pathophysiology of major depression. To explore the role of IL-1 in chronic stress-induced depression and some of its underlying biological mechanisms, we used the chronic mild stress (CMS) model of depression. Mice subjected to CMS for 5 weeks exhibited depressive-like symptoms, including decreased sucrose preference, reduced social exploration and adrenocortical activation, concomitantly with increased IL-1 beta levels in the hippocampus. In contrast, mice with deletion of the IL-1 receptor type I (IL-1rKO) or mice with transgenic, brain-restricted overexpression of IL-1 receptor antagonist did not display CMS-induced behavioral or neuroendocrine changes. Similarly, whereas in wild-type (WT) mice CMS significantly reduced hippocampal neurogenesis, measured by incorporation of bromodeoxyuridine (BrdU) and by doublecortin immunohistochemistry, no such decrease was observed IL-1rKO mice. The blunting of the adrenocortical activation in IL-1rKO mice may play a causal role in their resistance to depression, because removal of endogenous glucocorticoids by adrenalectomy also abolished the depressive-like effects of CMS, whereas chronic administration of corticosterone for 4 weeks produced depressive symptoms and reduced neurogenesis in both WT and IL-1rKO mice. The effects of CMS on both behavioral depression and neurogenesis could be mimicked by exogenous subcutaneous administration of IL-1 beta via osmotic minipumps for 4 weeks. These findings indicate that elevation in brain IL-1 levels, which characterizes many medical conditions, is both necessary and sufficient for producing the high incidence of depression found in these conditions. Thus, procedures aimed at reducing brain IL-1 levels may have potent antidepressive actions.

660 citations


Journal ArticleDOI
TL;DR: A detailed picture of DISC 1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness.
Abstract: The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.

562 citations


Journal ArticleDOI
TL;DR: Prevalence increased significantly in the CAG for PTSD, while the increases in PTSD-SMI and suicidal ideation-plans occurred both in the New Orleans sub-sample and in the remainder of the sample, meaning that high prevalence of hurricane-related mental illness remains widely distributed in the population nearly 2 years after the hurricane.
Abstract: A representative sample of 815 pre-hurricane residents of the areas affected by Hurricane Katrina was interviewed 5-8 months after the hurricane and again 1 year later as the Hurricane Katrina Community Advisory Group (CAG). The follow-up survey was carried out to study patterns-correlates of recovery from hurricane-related post-traumatic stress disorder (PTSD), broader anxiety-mood disorders and suicidality. The Trauma Screening Questionnaire screening scale of PTSD and the K6 screening scale of anxiety-mood disorders were used to generate DSM-IV prevalence estimates. Contrary to results in other disaster studies, where post-disaster mental disorder typically decreases with time, prevalence increased significantly in the CAG for PTSD (20.9 vs 14.9% at baseline), serious mental illness (SMI; 14.0 vs 10.9%), suicidal ideation (6.4 vs 2.8%) and suicide plans (2.5 vs 1.0%). The increases in PTSD-SMI were confined to respondents not from the New Orleans Metropolitan Area, while the increases in suicidal ideation-plans occurred both in the New Orleans sub-sample and in the remainder of the sample. Unresolved hurricane-related stresses accounted for large proportions of the inter-temporal increases in SMI (89.2%), PTSD (31.9%) and suicidality (61.6%). Differential hurricane-related stress did not explain the significantly higher increases among respondents from areas other than New Orleans, though, as this stress was both higher initially and decreased less among respondents from the New Orleans Metropolitan Area than from other areas affected by the hurricane. Outcomes were only weakly related to socio-demographic variables, meaning that high prevalence of hurricane-related mental illness remains widely distributed in the population nearly 2 years after the hurricane.

526 citations


Journal ArticleDOI
TL;DR: A review examines the potential contribution of different receptors to metabolic side effects associated with atypical antipsychotic treatment for all seven agents currently marketed in the United States and another agent in clinical development at the time of this publication.
Abstract: Atypical antipsychotic drugs offer several notable benefits over typical antipsychotics, including greater improvement in negative symptoms, cognitive function, prevention of deterioration, and quality of life, and fewer extrapyramidal symptoms (EPS). However, concerns about EPS have been replaced by concerns about other side effects, such as weight gain, glucose dysregulation and dyslipidemia. These side effects are associated with potential long-term cardiovascular health risks, decreased medication adherence, and may eventually lead to clinical deterioration. Despite a greater understanding of the biochemical effects of these drugs in recent years, the pharmacological mechanisms underlying their various therapeutic properties and related side effects remain unclear. Besides dopamine D(2) receptor antagonism, a characteristic feature of all atypical antipsychotic drugs, these agents also bind to a range of non-dopaminergic targets, including serotonin, glutamate, histamine, alpha-adrenergic and muscarinic receptors. This review examines the potential contribution of different receptors to metabolic side effects associated with atypical antipsychotic treatment for all seven agents currently marketed in the United States (risperidone, olanzapine, quetiapine, ziprasidone, aripiprazole, paliperidone and clozapine) and another agent (bifeprunox) in clinical development at the time of this publication.

519 citations


Journal ArticleDOI
TL;DR: While the G × E has been consistently detected in young adult samples, there are contradictory findings in adolescent boys and elderly people and the method of assessment of environmental adversity is also important with detailed interview-based approaches being associated with positive G ×E findings.
Abstract: Gene-environmental interaction (G x E) between a common functional polymorphism in the promoter region of the serotonin transporter gene (5-HTT) and environmental adversity on the onset of depression in humans has been found in fifteen independent studies. It is supported by evidence from animal experiments, pharmacological challenge and neuroimaging investigations. However, negative findings have been reported in two large samples. We explore reasons for the inconsistencies and suggest means to their resolution. Sample age and gender composition emerge as important factors. While the G x E has been consistently detected in young adult samples, there are contradictory findings in adolescent boys and elderly people. The method of assessment of environmental adversity is also important with detailed interview-based approaches being associated with positive G x E findings. Unresolved issues in the definition of the genotype include the dominance of alleles and influence of other polymorphisms, both in 5-HTT and other genes. Assessment of multiple adverse outcomes, including depression, substance use and self-destructive behaviour is needed to clarify the generalisability of the G x E pathogenic mechanisms. Biological and behavioural intermediate phenotypes are yet to be exploited to understand the mechanisms underlying the G x E.

519 citations


Journal ArticleDOI
TL;DR: This study observed that patients with psychosis exhibit abnormal physiological responses associated with reward prediction error in the dopaminergic midbrain, striatum and limbic system, and demonstrated subtle abnormalities in the ability of psychosis patients to discriminate between motivationally salient and neutral stimuli.
Abstract: While dopamine systems have been implicated in the pathophysiology of schizophrenia and psychosis for many years, how dopamine dysfunction generates psychotic symptoms remains unknown. Recent theoretical interest has been directed at relating the known role of midbrain dopamine neurons in reinforcement learning, motivational salience and prediction error to explain the abnormal mental experience of psychosis. However, this theoretical model has yet to be explored empirically. To examine a link between psychotic experience, reward learning and dysfunction of the dopaminergic midbrain and associated target regions, we asked a group of first episode psychosis patients suffering from active positive symptoms and a group of healthy control participants to perform an instrumental reward conditioning experiment. We characterized neural responses using functional magnetic resonance imaging. We observed that patients with psychosis exhibit abnormal physiological responses associated with reward prediction error in the dopaminergic midbrain, striatum and limbic system, and we demonstrated subtle abnormalities in the ability of psychosis patients to discriminate between motivationally salient and neutral stimuli. This study provides the first evidence linking abnormal mesolimbic activity, reward learning and psychosis.

514 citations


Journal ArticleDOI
TL;DR: The findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABAA receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition.
Abstract: In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD67) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABAA receptor subunits (α1, α4, β3, γ2 and δ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD67, SST and α1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABAA receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.

467 citations


Journal ArticleDOI
TL;DR: All MDD case–control genetic association studies published before June 2007 are reviewed and meta-analyses for polymorphisms that had been investigated in at least three studies that found statistically significant associations are performed.
Abstract: The genetic basis of major depressive disorder (MDD) has been investigated extensively, but the identification of MDD genes has been hampered by conflicting results from underpowered studies. We review all MDD case-control genetic association studies published before June 2007 and perform meta-analyses for polymorphisms that had been investigated in at least three studies. The study selection and data extraction were performed in duplicate by two independent investigators. The 183 papers that met our criteria studied 393 polymorphisms in 102 genes. Twenty-two polymorphisms (6%) were investigated in at least three studies. Seven polymorphisms had been evaluated in previous meta-analyses, 5 of these had new data available. Hence, we performed meta-analyses for 20 polymorphisms in 18 genes. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Statistically significant associations were found for the APOE varepsilon2 (OR, 0.51), GNB3 825T (OR, 1.38), MTHFR 677T (OR, 1.20), SLC6A4 44 bp Ins/Del S (OR, 1.11) alleles and the SLC6A3 40 bpVNTR 9/10 genotype (OR, 2.06). To date, there is statistically significant evidence for six MDD susceptibility genes (APOE, DRD4, GNB3, MTHFR, SLC6A3 and SLC6A4).

Journal ArticleDOI
TL;DR: Results indicate that a low melatonin level, caused by a primary deficit in ASMT activity, is a risk factor for autism spectrum disorders and support ASMT as a susceptibility gene for ASD and highlight the crucial role of melatonin in human cognition and behavior.
Abstract: Melatonin is produced in the dark by the pineal gland and is a key regulator of circadian and seasonal rhythms. A low melatonin level was reported in individuals with autism spectrum disorders (ASD), but the underlying cause of this deficit was unknown. The ASMT gene, encoding the last enzyme of melatonin synthesis, is located on the pseudo-autosomal region 1 of the sex chromosomes, deleted in several individuals with ASD. In this study, we sequenced all ASMT exons and promoters in individuals with ASD (n=250) and compared the allelic frequencies with controls (n=255). Non-conservative variations of ASMT were identified, including a splicing mutation present in two families with ASD, but not in controls. Two polymorphisms located in the promoter (rs4446909 and rs5989681) were more frequent in ASD compared to controls (P=0.0006) and were associated with a dramatic decrease in ASMT transcripts in blood cell lines (P=2×10−10). Biochemical analyses performed on blood platelets and/or cultured cells revealed a highly significant decrease in ASMT activity (P=2×10−12) and melatonin level (P=3×10−11) in individuals with ASD. These results indicate that a low melatonin level, caused by a primary deficit in ASMT activity, is a risk factor for ASD. They also support ASMT as a susceptibility gene for ASD and highlight the crucial role of melatonin in human cognition and behavior.

Journal ArticleDOI
TL;DR: It is suggested that a common haplotype in the CHRNA5/CHRNA3 gene cluster on chromosome 15 contains alleles, which predispose to ND, which are assessed in three independent populations of European origin.
Abstract: Twin studies indicate that additive genetic effects explain most of the variance in nicotine dependence (ND), a construct emphasizing habitual heavy smoking despite adverse consequences, tolerance and withdrawal To detect ND alleles, we assessed cigarettes per day (CPD) regularly smoked, in two European populations via whole genome association techniques In these approximately 7500 persons, a common haplotype in the CHRNA3-CHRNA5 nicotinic receptor subunit gene cluster was associated with CPD (nominal P=69 x 10(-5)) In a third set of European populations (n= approximately 7500) which had been genotyped for approximately 6000 SNPs in approximately 2000 genes, an allele in the same haplotype was associated with CPD (nominal P=26 x 10(-6)) These results (in three independent populations of European origin, totaling approximately 15 000 individuals) suggest that a common haplotype in the CHRNA5/CHRNA3 gene cluster on chromosome 15 contains alleles, which predispose to ND

Journal ArticleDOI
TL;DR: Findings are consistent with a formulation in which an antidepressant-mediated increase in levels of brain-derived neurotrophic factor promotes neurogenesis and protects against glucocorticoid toxicity in the amygdala in medicated but not in unmedicated depression.
Abstract: Major depressive disorder has been associated with volumetric abnormality in the amygdala. In this meta-analysis we examine results from magnetic resonance imaging volumetry studies of the amygdala in depression in order to assess both the nature of the relationship between depression and amygdala volume as well as the influence of extraexperimental factors that may account for significant variability in reported findings. We searched PubMed and ISI Web of Knowledge databases for articles published from 1985 to 2008 that used the wildcard terms 'Depress*' and 'Amygdal*' in the title, keywords or abstract. From the 13 studies that met inclusion criteria for our meta-analysis, we calculated aggregate effect size and heterogeneity estimates from amygdala volumetric data; we then used meta-regression to determine whether variability in specific extraexperimental factors accounted for variability in findings. The lack of a reliable difference in amygdala volume between depressed and never-depressed individuals was accounted for by a positive correlation between amygdala volume differences and the proportion of medicated depressed persons in study samples: whereas the aggregate effect size calculated from studies that included only medicated individuals indicated that amygdala volume was significantly increased in depressed relative to healthy persons, studies with only unmedicated depressed individuals showed a reliable decrease in amygdala volume in depression. These findings are consistent with a formulation in which an antidepressant-mediated increase in levels of brain-derived neurotrophic factor promotes neurogenesis and protects against glucocorticoid toxicity in the amygdala in medicated but not in unmedicated depression.

Journal ArticleDOI
TL;DR: The results show that the neuronal and behavioral effects of mutant hDISC1 are consistent with a dominant-negative mechanism, and are similar to some features of schizophrenia, and the present mouse model may facilitate the study of aspects of the pathogenesis of schizophrenia.
Abstract: A strong candidate gene for schizophrenia and major mental disorders, disrupted-in-schizophrenia 1 (DISC1) was first described in a large Scottish family in which a balanced chromosomal translocation segregates with schizophrenia and other psychiatric illnesses. The translocation mutation may result in loss of DISC1 function via haploinsufficiency or dominant-negative effects of a predicted mutant DISC1 truncated protein product. DISC1 has been implicated in neurodevelopment, including maturation of the cerebral cortex. To evaluate the neuronal and behavioral effects of mutant DISC1, the Tet-off system under the regulation of the CAMKII promoter was used to generate transgenic mice with inducible expression of mutant human DISC1 (hDISC1) limited to forebrain regions, including cerebral cortex, hippocampus and striatum. Expression of mutant hDISC1 was not associated with gross neurodevelopmental abnormalities, but led to a mild enlargement of the lateral ventricles and attenuation of neurite outgrowth in primary cortical neurons. These morphological changes were associated with decreased protein levels of endogenous mouse DISC1, LIS1 and SNAP-25. Compared to their sex-matched littermate controls, mutant hDISC1 transgenic male mice exhibited spontaneous hyperactivity in the open field and alterations in social interaction, and transgenic female mice showed deficient spatial memory. The results show that the neuronal and behavioral effects of mutant hDISC1 are consistent with a dominant-negative mechanism, and are similar to some features of schizophrenia. The present mouse model may facilitate the study of aspects of the pathogenesis of schizophrenia.

Journal ArticleDOI
TL;DR: These data do not provide evidence for the involvement of any genomic region with schizophrenia detectable with moderate sample size, however, a planned genomewide association study for response phenotypes and inclusion of individual phenotype and genotype data from this study in meta-analyses hold promise for eventual identification of susceptibility and protective variants.
Abstract: Little is known for certain about the genetics of schizophrenia. The advent of genomewide association has been widely anticipated as a promising means to identify reproducible DNA sequence variation associated with this important and debilitating disorder. A total of 738 cases with DSM-IV schizophrenia (all participants in the CATIE study) and 733 group-matched controls were genotyped for 492 900 single-nucleotide polymorphisms (SNPs) using the Affymetrix 500K two-chip genotyping platform plus a custom 164K fill-in chip. Following multiple quality control steps for both subjects and SNPs, logistic regression analyses were used to assess the evidence for association of all SNPs with schizophrenia. We identified a number of promising SNPs for follow-up studies, although no SNP or multimarker combination of SNPs achieved genomewide statistical significance. Although a few signals coincided with genomic regions previously implicated in schizophrenia, chance could not be excluded. These data do not provide evidence for the involvement of any genomic region with schizophrenia detectable with moderate sample size. However, a planned genomewide association study for response phenotypes and inclusion of individual phenotype and genotype data from this study in meta-analyses hold promise for eventual identification of susceptibility and protective variants.

Journal ArticleDOI
TL;DR: SNPs and haplotypes in the OXTR gene region identified using HapMap data and the Haploview algorithm show association with ASD, suggesting that this gene shapes both cognition and daily living skills that may cross diagnostic boundaries.
Abstract: Evidence both from animal and human studies suggests that common polymorphisms in the oxytocin receptor (OXTR) gene are likely candidates to confer risk for autism spectrum disorders (ASD). In lower mammals, oxytocin is important in a wide range of social behaviors, and recent human studies have shown that administration of oxytocin modulates behavior in both clinical and non-clinical groups. Additionally, two linkage studies and two recent association investigations also underscore a possible role for the OXTR gene in predisposing to ASD. We undertook a comprehensive study of all 18 tagged SNPs across the entire OXTR gene region identified using HapMap data and the Haploview algorithm. Altogether 152 subjects diagnosed with ASDs (that is, DSM IV autistic disorder or pervasive developmental disorder--NOS) from 133 families were genotyped (parents and affected siblings). Both individual SNPs and haplotypes were tested for association using family-based association tests as provided in the UNPHASED set of programs. Significant association with single SNPs and haplotypes (global P-values <0.05, following permutation test adjustment) were observed with ASD. Association was also observed with IQ and the Vineland Adaptive Behavior Scales (VABS). In particular, a five-locus haplotype block (rs237897-rs13316193-rs237889-rs2254298-rs2268494) was significantly associated with ASD (nominal global P=0.000019; adjusted global P=0.009) and a single haplotype (carried by 7% of the population) within that block showed highly significant association (P=0.00005). This is the third association study, in a third ethnic group, showing that SNPs and haplotypes in the OXTR gene confer risk for ASD. The current investigation also shows association with IQ and total VABS scores (as well as the communication, daily living skills and socialization subdomains), suggesting that this gene shapes both cognition and daily living skills that may cross diagnostic boundaries.

Journal ArticleDOI
TL;DR: Neural systems underlying voluntary and automatic emotion regulation are studied and a neural model of bipolar disorder is proposed.
Abstract: Neural systems underlying voluntary and automatic emotion regulation: toward a neural model of bipolar disorder

Journal ArticleDOI
TL;DR: The protozoan Toxoplasma gondii and cytomegalovirus are discussed as examples of infectious agents that have been linked to schizophrenia and in which genes and infectious agents interact.
Abstract: The infectious theory of psychosis, prominent early in the twentieth century, has recently received renewed scientific support. Evidence has accumulated that schizophrenia and bipolar disorder are complex diseases in which many predisposing genes interact with one or more environmental agents to cause symptoms. The protozoan Toxoplasma gondii and cytomegalovirus are discussed as examples of infectious agents that have been linked to schizophrenia and in which genes and infectious agents interact. Such infections may occur early in life and are thus consistent with neurodevelopmental as well as genetic theories of psychosis. The outstanding questions regarding infectious theories concern timing and causality. Attempts are underway to address the former by examining sera of individuals prior to the onset of illness and to address the latter by using antiinfective medications to treat individuals with psychosis. The identification of infectious agents associated with the etiopathogenesis of schizophrenia might lead to new methods for the diagnosis, treatment and prevention of this disorder.

Journal ArticleDOI
TL;DR: Genomic rearrangements resulting in haploinsufficiency of the CNTNAP2 gene in association with epilepsy and schizophrenia suggest that dosage alteration of this gene may lead to a complex phenotype of schizophrenia, epilepsy and cognitive impairment.
Abstract: A homozygous mutation of the CNTNAP2 gene has been associated with a syndrome of focal epilepsy, mental retardation, language regression and other neuropsychiatric problems in children of the Old Order Amish community. Here we report genomic rearrangements resulting in haploinsufficiency of the CNTNAP2 gene in association with epilepsy and schizophrenia. Genomic deletions of varying sizes affecting the CNTNAP2 gene were identified in three non-related Caucasian patients. In contrast, we did not observe any dosage variation for this gene in 512 healthy controls. Moreover, this genomic region has not been identified as showing large-scale copy number variation. Our data thus confirm an association of CNTNAP2 to epilepsy outside the Old Order Amish population and suggest that dosage alteration of this gene may lead to a complex phenotype of schizophrenia, epilepsy and cognitive impairment.

Journal ArticleDOI
TL;DR: The association of MDD and antidepressant response to genes important in the modulation of the hypothalamic–pituitary–adrenal axis and immune functions in Mexican Americans with major depression is reported and associations of several SNPs and antidepressantresponse are found.
Abstract: There are clinical parallels between the nature and course of depressive symptoms in major depressive disorder (MDD) and those of inflammatory disorders. However, the characterization of a possible immune system dysregulation in MDD has been challenging. Emerging data support the role of T-cell dysfunction. Here we report the association of MDD and antidepressant response to genes important in the modulation of the hypothalamic-pituitary-adrenal axis and immune functions in Mexican Americans with major depression. Specifically, single nucleotide polymorphisms (SNPs) in two genes critical for T-cell function are associated with susceptibility to MDD: PSMB4 (proteasome beta4 subunit), important for antigen processing, and TBX21 (T bet), critical for differentiation. Our analyses revealed a significant combined allele dose-effect: individuals who had one, two and three risk alleles were 2.3, 3.2 and 9.8 times more likely to have the diagnosis of MDD, respectively. We found associations of several SNPs and antidepressant response; those genes support the role of T cell (CD3E, PRKCH, PSMD9 and STAT3) and hypothalamic-pituitary-adrenal axis (UCN3) functions in treatment response. We also describe in MDD increased levels of CXCL10/IP-10, which decreased in response to antidepressants. This further suggests predominance of type 1 T-cell activity in MDD. T-cell function variations that we describe here may account for 47.8% of the attributable risk in Mexican Americans with moderate MDD. Immune function genes are highly variable; therefore, different genes might be implicated in distinct population groups.

Journal ArticleDOI
TL;DR: In vivo evidence of biologic epistasis between SLC6A4 and BDNF in the human brain is provided by identifying a neural mechanism linking serotonergic and neurotrophic signaling on the neural systems level, and have implications for personalized treatment planning in depression.
Abstract: Complex genetic disorders such as depression likely exhibit epistasis, but neural mechanisms of such gene–gene interactions are incompletely understood. 5-HTTLPR and BDNF VAL66MET, functional polymorphisms of the serotonin (5-HT) transporter (SLC6A4) and brain-derived neurotrophic factor (BDNF) gene, impact on two distinct, but interacting signaling systems, which have been related to depression and to the modulation of neurogenesis and plasticity of circuitries of emotion processing. Recent clinical studies suggest that the BDNF MET allele, which shows abnormal intracellular trafficking and regulated secretion, has a protective effect regarding the development of depression and in mice of social defeat stress. Here we show, using anatomical neuroimaging techniques in a sample of healthy subjects (n=111), that the BDNF MET allele, which is predicted to have reduced responsivity to 5-HT signaling, protects against 5-HTTLPR S allele-induced effects on a brain circuitry encompassing the amygdala and the subgenual portion of the anterior cingulate (rAC). Our analyses revealed no effect of the 5-HTTLPR S allele on rAC volume in the presence of BDNF MET alleles, whereas a significant volume reduction (P<0.001) was seen on BDNF VAL/VAL background. Interacting genotype effects were also found in structural connectivity between amygdala and rAC (P=0.002). These data provide in vivo evidence of biologic epistasis between SLC6A4 and BDNF in the human brain by identifying a neural mechanism linking serotonergic and neurotrophic signaling on the neural systems level, and have implications for personalized treatment planning in depression.

Journal ArticleDOI
TL;DR: Significant increased CRF mRNA levels in the PVN of the depressed patients were found, accompanied by a significantly increased expression of four genes involved in the activation of CRF neurons, that is, CRFR1, estrogen receptor-α, AVPR1A and mineralocorticoid receptor, which raises the possibility that a disturbed balance in the production of receptors may contribute to theactivation of the HPA axis in depression.
Abstract: Hyperactivity of corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus (PVN) of the hypothalamus is a prominent feature in depression and may be important in the etiology of this disease. The activity of the CRF neurons in the stress response is modulated by a number of factors that stimulate or inhibit CRF expression, including (1) corticosteroid receptors and their chaperones, heat shock proteins 70 and 90, (2) sex hormone receptors, (3) CRF receptors 1 (CRFR1) and 2, (4) cytokines interleukin 1-beta and tumor necrosis factor-alpha, (5) neuropeptides and receptors, vasopressin (AVP), AVP receptor 1a (AVPR1A) and oxytocin and (6) transcription factor cAMP-response element-binding protein. We hypothesized that, in depression, the transcript levels of those genes that are involved in the activation of the hypothalamo-pituitary-adrenal (HPA) axis are upregulated, whereas the transcript levels of the genes involved in the inhibition of the HPA axis are downregulated. We performed laser microdissection and real-time PCR in the PVN and as a control in the supraoptic nucleus. Snap-frozen post-mortem hypothalami of seven depressed and seven matched controls were used. We found significantly increased CRF mRNA levels in the PVN of the depressed patients. This was accompanied by a significantly increased expression of four genes that are involved in the activation of CRF neurons, that is, CRFR1, estrogen receptor-alpha, AVPR1A and mineralocorticoid receptor, while the expression of the androgen receptor mRNA involved in the inhibition of CRF neurons was decreased significantly. These findings raise the possibility that a disturbed balance in the production of receptors may contribute to the activation of the HPA axis in depression.

Journal ArticleDOI
TL;DR: It is demonstrated that genetically enforced expression of the anti-inflammatory cytokine interleukin (IL)-10 by macrophages attenuates the long-term behavioral and pharmacological consequences of prenatal immune activation in a mouse model of prenatal viral-like infection by polyriboinosinic–polyribocytidilic acid.
Abstract: Maternal infections during pregnancy increase the risk for schizophrenia and related disorders of putative neurodevelopmental origin in the offspring. This association has been attributed to enhanced expression of pro-inflammatory cytokines in the fetal environment in response to maternal immunological stimulation. In contrast, the specific roles of anti-inflammatory cytokines are virtually unknown in this context. Here, we demonstrate that genetically enforced expression of the anti-inflammatory cytokine interleukin (IL)-10 by macrophages attenuates the long-term behavioral and pharmacological consequences of prenatal immune activation in a mouse model of prenatal viral-like infection by polyriboinosinic-polyribocytidilic acid (PolyI:C; 2 mg/kg, intravenously). In the absence of a discrete prenatal inflammatory stimulus, however, enhanced levels of IL-10 at the maternal-fetal interface by itself also precipitates specific behavioral abnormalities in the grown offspring. This highlights that in addition to the disruptive effects of excess pro-inflammatory molecules, a shift toward enhanced anti-inflammatory signaling in prenatal life can similarly affect cognitive and behavioral development. Hence, shifts of the balance between pro- and anti-inflammatory cytokine classes may be a critical determinant of the final impact on neurodevelopment following early life infection or innate immune imbalances.

Journal ArticleDOI
TL;DR: Investigating whether a single progesterone administration to healthy young women in their follicular phase modulates the amygdala response to salient, biologically relevant stimuli reveals a neural mechanism by which progester one may mediate adverse effects on anxiety and mood.
Abstract: The acute neural effects of progesterone are mediated by its neuroactive metabolites allopregnanolone and pregnanolone. These neurosteroids potentiate the inhibitory actions of gamma-aminobutyric acid (GABA). Progesterone is known to produce anxiolytic effects in animals, but recent animal studies suggest that pregnanolone increases anxiety after a period of low allopregnanolone concentration. This effect is potentially mediated by the amygdala and related to the negative mood symptoms in humans that are observed during increased allopregnanolone levels. Therefore, we investigated with functional magnetic resonance imaging (MRI) whether a single progesterone administration to healthy young women in their follicular phase modulates the amygdala response to salient, biologically relevant stimuli. The progesterone administration increased the plasma concentrations of progesterone and allopregnanolone to levels that are reached during the luteal phase and early pregnancy. The imaging results show that progesterone selectively increased amygdala reactivity. Furthermore, functional connectivity analyses indicate that progesterone modulated functional coupling of the amygdala with distant brain regions. These results reveal a neural mechanism by which progesterone may mediate adverse effects on anxiety and mood.

Journal ArticleDOI
TL;DR: MAOA seems to moderate the impact of childhood trauma on adult psychopathology in female subjects in the same way as previously shown among male subjects.
Abstract: Women who have experienced childhood sexual abuse (CSA) have an increased risk of alcoholism and antisocial personality disorder (ASPD). Among male subjects, a functional polymorphism (MAOA-LPR, monoamine oxidase A linked polymorphic region) in the promoter region of the monoamine oxidase A gene (MAOA) appears to moderate the effect of childhood maltreatment on antisocial behavior. Our aim was to test whether MAOA-LPR influences the impact of CSA on alcoholism and ASPD in a sample of 291 women, 50% of whom have experienced CSA; we also tested whether haplotypes covering the region where both MAOA and monoamine oxidase B (MAOB) genes are located predict risk of alcoholism and ASPD better than the MAOA-LPR locus alone. Participants included 168 alcoholics (39 with ASPD (antisocial alcoholics) and 123 controls (no alcoholics, no ASPD). Antisocial behavior was also modeled as a continuous trait: ASPD symptoms count. The MAOA-LPR low activity allele was associated with alcoholism (P=0.005), particularly antisocial alcoholism (P=0.00009), only among sexually abused subjects. Sexually abused women who were homozygous for the low activity allele had higher rates of alcoholism and ASPD, and more ASPD symptoms, than abused women homozygous for the high activity allele. Heterozygous women displayed an intermediate risk pattern. In contrast, there was no relationship between alcoholism/antisocial behavior and MAOA-LPR genotype among non-abused women. The MAOA-LPR low activity allele was found on three different haplotypes. The most abundant MAOA haplotype containing the MAOA-LPR low activity allele was found in excess among alcoholics (P=0.008) and antisocial alcoholics (P=0.001). Finally, a MAOB haplotype, which we termed haplotype C, was significantly associated with alcoholism (P=0.006), and to a lesser extent with antisocial alcoholism (P=0.03). In conclusions, MAOA seems to moderate the impact of childhood trauma on adult psychopathology in female subjects in the same way as previously shown among male subjects. The MAOA-LPR low activity allele appears to confer increased vulnerability to the adverse psychosocial consequences of CSA. Haplotype-based analysis of the MAOA gene appeared to strengthen the association, as compared to the MAOA-LPR locus alone. A MAOB haplotype was associated with alcoholism independently from ASPD.

Journal ArticleDOI
TL;DR: In the current study, unaffected subjects were genotyped at the NRG1 single nucleotide polymorphism (SNP) rs6994992 ( SNP8NRG243177) locus, previously associated with increased risk for psychosis, and the effect of genetic variation at this locus on white matter density and integrity was ascertained.
Abstract: Theories of abnormal anatomical and functional connectivity in schizophrenia and bipolar disorder are supported by evidence from functional magnetic resonance imaging (MRI), structural MRI and diffusion tensor imaging (DTI) The presence of similar abnormalities in unaffected relatives suggests such disconnectivity is genetically mediated, albeit through unspecified loci Neuregulin 1 (NRG1) is a psychosis susceptibility gene with effects on neuronal migration, axon guidance and myelination that could potentially explain these findings In the current study, unaffected subjects were genotyped at the NRG1 single nucleotide polymorphism (SNP) rs6994992 (SNP8NRG243177) locus, previously associated with increased risk for psychosis, and the effect of genetic variation at this locus on white matter density (T(1)-weighted MRI) and integrity (DTI) was ascertained Subjects with the risk-associated TT genotype had reduced white matter density in the anterior limb of the internal capsule and evidence of reduced structural connectivity in the same region using DTI We therefore provide the first imaging evidence that genetic variation in NRG1 is associated with reduced white matter density and integrity in human subjects This finding is discussed in the context of NRG1 effects on neuronal migration, axon guidance and myelination

Journal ArticleDOI
TL;DR: This study provides further characterization of the synaptic pathology present in schizophrenia and of the metabolic dysfunction observed in bipolar disorder and has provided strong evidence implicating the septin protein family of proteins in psychiatric disorders for the first time.
Abstract: There is evidence for both similarity and distinction in the presentation and molecular characterization of schizophrenia and bipolar disorder. In this study, we characterized protein abnormalities in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder using two-dimensional gel electrophoresis. Tissue samples were obtained from 35 individuals with schizophrenia, 35 with bipolar disorder and 35 controls. Eleven protein spots in schizophrenia and 48 in bipolar disorder were found to be differentially expressed (P<0.01) in comparison to controls, with 7 additional spots found to be altered in both diseases. Using mass spectrometry, 15 schizophrenia-associated proteins and 51 bipolar disorder-associated proteins were identified. The functional groups most affected included synaptic proteins (7 of the 15) in schizophrenia and metabolic or mitochondrial-associated proteins (25 of the 51) in bipolar disorder. Six of seven synaptic-associated proteins abnormally expressed in bipolar disorder were isoforms of the septin family, while two septin protein spots were also significantly differentially expressed in schizophrenia. This finding represented the largest number of abnormalities from one protein family. All septin protein spots were upregulated in disease in comparison to controls. This study provides further characterization of the synaptic pathology present in schizophrenia and of the metabolic dysfunction observed in bipolar disorder. In addition, our study has provided strong evidence implicating the septin protein family of proteins in psychiatric disorders for the first time.

Journal ArticleDOI
TL;DR: A combined genetic and imaging approach focused on Monoamine Oxidase A, encoding a key enzyme for monoamine metabolism previously associated with temperament and antisocial behavior, implicate a neural circuit for variation in human personality under genetic control and provide an anatomically consistent mechanism for vmPFC–amygdala interactions underlying this variation.
Abstract: Little is known about neural mechanisms underlying human personality and temperament, despite their considerable importance as highly heritable risk mediators for somatic and psychiatric disorders. To identify these circuits, we used a combined genetic and imaging approach focused on Monoamine Oxidase A (MAOA), encoding a key enzyme for monoamine metabolism previously associated with temperament and antisocial behavior. Male carriers of a low-expressing genetic variant exhibited dysregulated amygdala activation and increased functional coupling with ventromedial prefrontal cortex (vmPFC). Stronger coupling predicted increased harm avoidance and decreased reward dependence scores, suggesting that this circuitry mediates a part of the association of MAOA with these traits. We utilized path analysis to parse the effective connectivity within this system, and provide evidence that vmPFC regulates amygdala indirectly by influencing rostral cingulate cortex function. Our data implicate a neural circuit for variation in human personality under genetic control, provide an anatomically consistent mechanism for vmPFC-amygdala interactions underlying this variation, and suggest a role for vmPFC as a superordinate regulatory area for emotional arousal and social behavior.

Journal ArticleDOI
TL;DR: The combination of linkage and association approaches provided a number of liability genes in BP, Nevertheless, other approaches are required to disentangle conflicting findings, such as gene interaction analyses, interaction with psychosocial and environmental factors and, finally, endophenotype investigations.
Abstract: Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome 'hot regions' for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF. A number of promising genes, which received independent confirmations, and genes that have to be further investigated in BP, have been also systematically listed. In conclusion, the combination of linkage and association approaches provided a number of liability genes. Nevertheless, other approaches are required to disentangle conflicting findings, such as gene interaction analyses, interaction with psychosocial and environmental factors and, finally, endophenotype investigations.