scispace - formally typeset
Search or ask a question

Showing papers in "The Journal of Comparative Neurology in 2000"


Journal ArticleDOI
TL;DR: The present data provide the first evidence that adult neurogenesis occurs within an angiogenic niche and may provide a novel interface where mesenchyme‐derived cells and circulating factors influence plasticity in the adult central nervous system.
Abstract: The thin lamina between the hippocampal hilus and granule cell layer, or subgranule zone (SGZ), is an area of active proliferation within the adult hippocampus known to generate new neurons throughout adult life. Although the neuronal fate of many dividing cells is well documented, little information is available about the phenotypes of cells in S-phase or how the dividing cells might interact with neighboring cells in the process of neurogenesis. Here, we make the unexpected observation that dividing cells are found in dense clusters associated with the vasculature and roughly 37% of all dividing cells are immunoreactive for endothelial markers. Most of the newborn endothelial cells disappear over several weeks, suggesting that neurogenesis is intimately associated with a process of active vascular recruitment and subsequent remodeling. The present data provide the first evidence that adult neurogenesis occurs within an angiogenic niche. This environment may provide a novel interface where mesenchyme-derived cells and circulating factors influence plasticity in the adult central nervous system.

1,874 citations


Journal ArticleDOI
TL;DR: Two G protein‐coupled receptors have been identified that bind corticotropin‐releasing factor (CRF) and urocortin (UCN) with high affinity and hybridization histochemical methods were used to shed light on controversies concerning their localization in rat brain, and to provide normative distributional data in mouse.
Abstract: Two G protein-coupled receptors have been identified that bind corticotropin-releasing factor (CRF) and urocortin (UCN) with high affinity. Hybridization histochemical methods were used to shed light on controversies concerning their localization in rat brain, and to provide normative distributional data in mouse, the standard model for genetic manipulation in mammals. The distribution of CRF-R1 mRNA in mouse was found to be fundamentally similar to that in rat, with expression predominating in the cerebral cortex, sensory relay nuclei, and in the cerebellum and its major afferents. Pronounced species differences in distribution were few, although more subtle variations in the relative strength of R1 expression were seen in several forebrain regions. CRF-R2 mRNA displayed comparable expression in rat and mouse brain, distinct from, and more restricted than that of CRF-R1. Major neuronal sites of CRF-R2 expression included aspects of the olfactory bulb, lateral septal nucleus, bed nucleus of the stria terminalis, ventromedial hypothalamic nucleus, medial and posterior cortical nuclei of the amygdala, ventral hippocampus, mesencephalic raphe nuclei, and novel localizations in the nucleus of the solitary tract and area postrema. Several sites of expression in the limbic forebrain were found to overlap partially with ones of androgen receptor expression. In pituitary, rat and mouse displayed CRF-R1 mRNA signal continuously over the intermediate lobe and over a subset of cells in the anterior lobe, whereas CRF-R2 transcripts were expressed mainly in the posterior lobe. The distinctive expression pattern of CRF-R2 mRNA identifies additional putative central sites of action for CRF and/or UCN. Constitutive expression of CRF-R2 mRNA in the nucleus of the solitary tract, and stress-inducible expression of CRF-R1 transcripts in the paraventricular nucleus may provide a basis for understanding documented effects of CRF-related peptides at a loci shown previously to lack a capacity for CRF-R expression or CRF binding. Other such "mismatches" remain to be reconciled.

1,028 citations


Journal ArticleDOI
TL;DR: Differences in the expression topography of Tbr‐1 and Emx‐1 suggest the existence of a novel “ventral pallium” subdivision, which is an EmX‐1‐negative pallial territory intercalated between the striatum and the lateral pallium.
Abstract: Pallial and subpallial morphological subdivisions of the developing chicken telencephalon were examined by means of gene markers, compared with their expression pattern in the mouse. Nested expression domains of the genes Dlx-2 and Nkx-2.1, plus Pax-6-expressing migrated cells, are characteristic for the mouse subpallium. The genes Pax-6, Tbr-1, and Emx-1 are expressed in the pallium. The pallio-subpallial boundary lies at the interface between the Tbr-1 and Dlx-2 expression domains. Differences in the expression topography of Tbr-1 and Emx-1 suggest the existence of a novel “ventral pallium” subdivision, which is an Emx-1-negative pallial territory intercalated between the striatum and the lateral pallium. Its derivatives in the mouse belong to the claustroamygdaloid complex. Chicken genes homologous to these mouse genes are expressed in topologically comparable patterns during development. The avian subpallium, called “paleostriatum,” shows nested Dlx-2 and Nkx-2.1 domains and migrated Pax-6-positive neurons; the avian pallium expresses Pax-6, Tbr-1, and Emx-1 and also contains a distinct Emx-1-negative ventral pallium, formed by the massive domain confusingly called “neostriatum.” These expression patterns extend into the septum and the archistriatum, as they do into the mouse septum and amygdala, suggesting that the concepts of pallium and subpallium can be extended to these areas. The similarity of such molecular profiles in the mouse and chicken pallium and subpallium points to common sets of causal determinants. These may underlie similar histogenetic specification processes and field homologies, including some comparable connectivity patterns. J. Comp. Neurol. 424: 409 ‐ 438, 2000. © 2000 Wiley-Liss, Inc.

918 citations


Journal ArticleDOI
TL;DR: The corticocortical connections of architectonically defined areas of parietal and temporoparietal cortex are studied, with emphasis on areas in the intraparietal sulcus that are implicated in visual and somatosensory integration.
Abstract: We studied the corticocortical connections of architectonically defined areas of parietal and temporoparietal cortex, with emphasis on areas in the intraparietal sulcus (IPS) that are implicated in visual and somatosensory integration. Retrograde tracers were injected into selected areas of the IPS, superior temporal sulcus, and parietal lobule. The distribution of labeled cells was charted in relation to architectonically defined borders throughout the hemisphere and displayed on computer-generated three-dimensional reconstructions and on cortical flat maps. Injections centered in the ventral intraparietal area (VIP) revealed a complex pattern of inputs from numerous visual, somatosensory, motor, and polysensory areas, and from presumed vestibular- and auditory-related areas. Sensorimotor projections were predominantly from the upper body representations of at least six somatotopically organized areas. In contrast, injections centered in the neighboring ventral lateral intraparietal area (LIPv) revealed inputs mainly from extrastriate visual areas, consistent with previous studies. The pattern of inputs to LIPv largely overlapped those to zone MSTdp, a newly described subdivision of the medial superior temporal area. These results, in conjunction with those from injections into other parietal areas (7a, 7b, and anterior intraparietal area), support the fine-grained architectonic partitioning of cortical areas described in the preceding study. They also support and extend previous evidence for multiple distributed networks that are implicated in multimodal integration, especially with regard to area VIP.

822 citations


Journal ArticleDOI
TL;DR: 42 different immunocytochemical markers were applied to sections of the mouse retina and studied their cellular and synaptic localization by using confocal microscopy to detect possible changes in the retinal organization of mutant mice.
Abstract: Transgenic mice provide a new approach for studying the structure and function of the mammalian retina. In the past, the cellular organization of the mammalian retina was investigated preferentially in primates, cats, and rats but rarely in mice. In the current study, the authors applied 42 different immunocytochemical markers to sections of the mouse retina and studied their cellular and synaptic localization by using confocal microscopy. The markers applied were from three major groups: 1) antibodies against calcium-binding proteins, such as calbindin, parvalbumin, recoverin, or caldendrin; 2) antibodies that recognize specific transmitter systems, such as glycine, γ-aminobutyric acid, or acetylcholine; and 3) antibodies that recognize transmitter receptors and show their aggregation at specific synapses. Only a few markers labeled only one cell type: Most antibodies recognized specific groups of neurons. These were analyzed in more detail in double-labeling experiments with different combinations of the antibodies. In light of their results, the authors offer a list of immunocytochemical markers that can be used to detect possible changes in the retinal organization of mutant mice. J. Comp. Neurol. 424:1–23, 2000. © 2000 Wiley-Liss, Inc.

687 citations


Journal ArticleDOI
TL;DR: The localization of 5‐HT1B receptors to the membrane of preterminal axons suggests that they control transmitter release from nonserotonin as well as serotonin neurons by mediating serotonin effects on axonal conduction.
Abstract: The 5-HT1A and 5-HT1B receptors of serotonin play important roles as auto- and heteroreceptors controlling the release of serotonin itself and of other neurotransmitters/modulators in the central nervous system (CNS). To determine the precise localization of these receptors, we examined their respective cellular and subcellular distributions in the nucleus raphe dorsalis and hippocampal formation (5-HT1A) and in the globus pallidus and substantia nigra (5-HT1B), using light and electron microscopic immunocytochemistry with specific antibodies. Both immunogold and immunoperoxidase preembedding labelings were achieved. In the nucleus raphe dorsalis, 5-HT1A immunoreactivity was found exclusively on neuronal cell bodies and dendrites, and mostly along extrasynaptic portions of their plasma membrane. After immunogold labeling, the density of membrane-associated 5-HT1A receptors could be estimated to be at least 30-40 times that in the cytoplasm. In the hippocampal formation, the somata as well as dendrites of pyramidal and granule cells displayed 5-HT1A immunoreactivity, which was also prominent on the dendritic spines of pyramidal cells. In both substantia nigra and globus pallidus, 5-HT1B receptors were preferentially associated with the membrane of fine, unmyelinated, preterminal axons, and were not found on axon terminals. A selective localization to the cytoplasm of endothelial cells of microvessels was also observed. Because the 5-HT1A receptors are somatodendritic, they are ideally situated to mediate serotonin effects on neuronal firing, both as auto- and as heteroreceptors. The localization of 5-HT1B receptors to the membrane of preterminal axons suggests that they control transmitter release from nonserotonin as well as serotonin neurons by mediating serotonin effects on axonal conduction. The fact that these two receptor subtypes predominate at extrasynaptic and nonsynaptic sites provides further evidence for diffuse serotonin transmission in the CNS.

470 citations


Journal ArticleDOI
TL;DR: Neurons that have never been identified as PER‐ or TIM‐immunoreactive were visualized in this assay system, indicating promoter activity of the clock genes in these cells and suggesting that their products cannot accumulate to detectable levels in certain neurons.
Abstract: Subsets of brain neurons expressing the clock genes period (per) and timeless (tim) are involved in the generation of circadian behavioral rhythms. However, current knowledge of projection patterns of these neurons is limited to those immunoreactive to an antibody against a crustacean neuropeptide. The GAL4-expression system was utilized to visualize neuronal processes from all per and tim-expressing neurons in the central nervous system. Each of two types of GAL4-driver fusion genes, per-gal4 or tim-gal4, was combined in transgenic flies with marker genes-lacZ, and sequences encoding green fluorescent protein or TAU protein-under the control of the GAL4-responsive element UAS. This allowed visualization of the cytoplasm of GAL4-expressing cells. Thus, neurites of clock neurons in the adult brain as well as those of larvae and pupae were revealed. Among the anatomical patterns revealed by per-gal4- or tim-gal4-driven marker expression were a previously unknown, dorsally located neuronal cluster, along with the projections of these cells and of other dorsal neurons characterized in earlier studies only by the location of their perikarya. The similarity of projections from PER- or TIM-containing neurons during development to those in the adult implies that these features of mature clock neurons are established by the larval stages. Neurons that have never been identified as PER- or TIM-immunoreactive were also visualized in this assay system, indicating promoter activity of the clock genes in these cells and suggesting that their products cannot accumulate to detectable levels in certain neurons.

420 citations


Journal ArticleDOI
TL;DR: This study focuses largely on the architectonic organization of areas within and near the IPS of the macaque monkey, but also examines remaining portions of the hemisphere with which the IPS is interconnected.
Abstract: The intraparietal sulcus (IPS) of the macaque monkey contains numerous areas associated with different aspects of cortical function, including motor control as well as visual, somatosensory, vestibular, and possibly auditory processing. This study focuses largely on the architectonic organization of areas within and near the IPS, but also examines remaining portions of the hemisphere with which the IPS is interconnected. We charted the location of up to 72 architectonically distinct areas plus numerous architectonic zones in individuals over a region covering most of the cortical hemisphere. Identified cortical subdivisions (areas plus zones) were represented on computationally generated flat maps in relation to gyral and sulcal geography, thereby facilitating the analysis of consistent as well as variable aspects of the sizes and relative positions of subdivisions across animals. Using myelin and Nissl stains, plus immunohistochemical staining with the SMI-32 antibody, 17 architectonic subdivisions were identified that are largely or entirely contained in the intraparietal and parieto-occipital sulci. This includes four newly identified zones: a heavily myelinated lateral occipitoparietal zone, termed LOP; a strongly SMI-32 immunoreactive zone termed 7t (near the tip of the IPS); plus medial and lateral subdivisions (VIPm and VIPl) of ventral intraparietal area (VIP), which was previously regarded as an anatomically homogeneous area. Within the superior temporal sulcus, we identified a densely myelinated zone termed the dorso-posterior subdivision of the medial superior temporal area (MSTdp) that bordered middle temporal area (MT). We charted the extent of numerous other architectonically defined subdivisions throughout the cortical hemisphere by using criteria largely based on previous studies, but in some instances involving revised or expanded identification criteria.

416 citations


Journal ArticleDOI
TL;DR: The distribution of CB1‐immunoreactivity in rat brain was similar to the distribution of binding sites for radiolabelled cannabinoids, with high levels of expression in the olfactory system, the hippocampal formation, the basal ganglia, the cerebellum, and the neocortex, providing important evidence that CB1 is likely to be largely responsible for mediating effects of cannabinoids in the brain.
Abstract: The CB(1)-type cannabinoid receptor mediates physiologic effects of Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of the drug marijuana. In this report, the authors analyse the expression of CB(1) in the rat brain by using antibodies to the C-terminal 13 amino acids of the receptor. Western blot analysis of rat brain membranes revealed a prominent immunoreactive band with a molecular mass ( approximately 53 kDa) consistent with that predicted for CB(1) from the rat cDNA sequence. In addition, however, less intense immunoreactive bands corresponding to glycosylated ( approximately 62 kDa) and putative N-terminally shorter ( approximately 45 kDa) isoforms of CB(1) were detected. The distribution of CB(1)-immunoreactivity in rat brain was similar to the distribution of binding sites for radiolabelled cannabinoids, with high levels of expression in the olfactory system, the hippocampal formation, the basal ganglia, the cerebellum, and the neocortex. This provides important evidence that CB(1) is likely to be largely responsible for mediating effects of cannabinoids in the brain. CB(1) immunoreactivity was associated with nerve fibre systems and axon terminals but was not detected in neuronal somata. This is consistent with the presynaptic inhibitory effects of cannabinoids on neurotransmitter release in the brain. Detailed immunocytochemical analysis of anatomically or functionally related regions of the brain revealed the location of CB(1) receptors within identified neural circuits. Determination of the cellular and subcellular location of CB(1) within known neuronal circuits of the brain provides an anatomic framework for interpretation of the neurophysiologic and behavioural effects of cannabinoids.

367 citations


Journal ArticleDOI
TL;DR: In this article, the authors explored systematically the distribution of leptin-activated neurons throughout the rat brain and investigated the chemical identity of subsets of these leptinactivated cells, and found that leptin stimulates brain pathways containing neuropeptides that are involved in the regulation of energy balance, autonomic homeostasis, and neuroendocrine status.
Abstract: Leptin has profound effects on food intake, body weight, and neuroendocrine status. The lack of leptin results in hormonal and metabolic alterations and a dramatic increase in body weight. Leptin acts in the brain, especially in the hypothalamus; however, the central nervous system sites that respond to leptin have not been examined comprehensively. In this study, we explored systematically the distribution of leptin-activated neurons throughout the rat brain. Furthermore, we investigated the chemical identity of subsets of these leptin-activated cells. Fos-like immunoreactivity (Fos-IR) was investigated in the rat brain after two different doses of leptin (1.0 mg/kg and 5.0 mg/kg) at 2 hours and 6 hours after injections. The induction of Fos-IR was observed in hypothalamic nuclei, including the paraventricular nucleus (PVH), the retrochiasmatic area (RCA), the ventromedial nucleus (VMH), the dorsomedial nucleus (DMH), the arcuate nucleus (Arc), and the ventral premammillary nucleus (PMV). In addition, leptin-induced Fos-IR was found in several nuclei of the brainstem, including the superior lateral and external lateral subdivisions of the parabrachial nucleus (slPB and elPB, respectively), the supragenual nucleus, and the nucleus of the solitary tract (NTS). By using double-labeling immunohistochemistry or immunohistochemistry coupled with in situ hybridization, leptin-activated neurons were found that contained cocaine- and amphetamine-regulated transcript mRNA in several hypothalamic nuclei, including the RCA, Arc, DMH, and PMV. In the Arc and DMH, leptin-induced Fos-IR was observed in neurons that expressed neurotensin mRNA. Dynorphin neurons in the VMH and in the Arc also expressed Fos-IR. In the brainstem, we found that cholecystokinin neurons in the slPB and glucagon-like peptide-1 neurons in the NTS were activated by leptin. We also investigated the coexpression of Fos-IR and the long form of the leptin receptor (OBRb) mRNA. We found double-labeled neurons surrounding the median eminence and in the RCA, Arc, VMH, DMH, and PMV. However, in brainstem sites, very little OBRb mRNA was found; thus, there were very few double-labeled cells. These results suggest that leptin stimulates brain pathways containing neuropeptides that are involved in the regulation of energy balance, autonomic homeostasis, and neuroendocrine status.

362 citations


Journal ArticleDOI
TL;DR: The results support the subdivision of the orbital and medial PFC into “medial” and “orbital” networks and suggest that the prefrontostriatal projections reflect the functional organization of the PFC rather than topographic location.
Abstract: The organization of projections from the prefrontal cortex (PFC) to the striatum in relation to previously defined "orbital" and "medial" networks within the PFC were studied in monkeys using anterograde and retrograde tracing techniques. The results indicate that the orbital and medial networks connect to different striatal regions. The ventromedial striatum (the medial caudate nucleus, accumbens nucleus, and ventral putamen) receives input predominantly from the medial PFC (mPFC) and orbital areas 12o, Iai, and 13a, which constitute the "medial" network. More specifically, caudal medial areas 32, 25, and 14r project to the medial edge of the caudate nucleus, accumbens nucleus, and ventromedial putamen, whereas rostral areas 10o, 10m, and 11m are restricted to the medial edge of the caudate. Projections from orbital areas 12o, 13a, and Iai extend more laterally into the lateral accumbens and the ventral putamen. Area 24 gives rise to a divided pattern of projections, including fibers to the ventromedial striatum, apparently from area 24b, and fibers to the dorsolateral striatum, apparently from area 24c. Other areas of orbital cortex (11l, 12m, 12l, 13m, 13l, Ial, and Iam) that constitute the "orbital" network project primarily to the central part of the rostral striatum. This region includes the central and lateral parts of the caudate nucleus, and the ventromedial putamen, on either side of the internal capsule. The results support the subdivision of the orbital and medial PFC into "medial" and "orbital" networks and suggest that the prefrontostriatal projections reflect the functional organization of the PFC rather than topographic location.

Journal ArticleDOI
TL;DR: Connections support the idea of a role for cortical area 25 in emotional and autonomic responses, albeit less direct than that described in rodents.
Abstract: In several species, including primates, stimulation studies indicate that the infralimbic cortex, the most caudal part of the ventromedial prefrontal cortex, functions as a visceral motor region. In addition, recent positron emission tomography studies implicate the subgenual region in depression and mania. To determine the subcortical projections of this region in primates, injections of Phaseolus vulgaris leukoagglutinin, biotinylated dextran amine, or rhodamine-labeled dextran amine were placed in area 25 in three monkeys. In contrast to the efferents from area 25 previously described in the rat, there were no projections to autonomic effector regions, such as the nucleus of the solitary tract, magnocellular neurosecretory cell groups in the hypothalamus, ventrolateral medulla, or intermediolateral column of the spinal cord. However, projections were shown to a number of structures with probable roles in autonomic function and direct connections to some of the abovementioned autonomic effector regions, including bed nucleus of the stria terminalis, perifornical and anterior hypothalamus, periaqueductal gray, and lateral parabrachial nucleus. In addition, there were projections to several forebrain structures that receive projections from other components of the medial prefrontal network including the medial part of the caudate nucleus, lateral septum, midline and mediodorsal thalamic nuclei, the lateral parvocellular part of the basal accessory amygdaloid nucleus, and the magnocellular part of the basal amygdaloid. None of the injections resulted in labeling in the medulla. These connections support the idea of a role for cortical area 25 in emotional and autonomic responses, albeit less direct than that described in rodents.

Journal ArticleDOI
TL;DR: Electrical stimulation of HG resulted in short‐latency EPs in an area that overlaps PLST, indicating that PLST receives a corticocortical input, either directly or indirectly, from HG.
Abstract: The human superior temporal cortex plays a critical role in hearing, speech, and language, yet its functional organization is poorly understood. Evoked potentials (EPs) to auditory click-train stimulation presented binaurally were recorded chronically from penetrating electrodes implanted in Heschl's gyrus (HG), from pial-surface electrodes placed on the lateral superior temporal gyrus (STG), or from both simultaneously, in awake humans undergoing surgery for medically intractable epilepsy. The distribution of averaged EPs was restricted to a relatively small area on the lateral surface of the posterior STG. In several cases, there were multiple foci of high amplitude EPs lying along this acoustically active portion of STG. EPs recorded simultaneously from HG and STG differed in their sensitivities to general anesthesia and to changes in rate of stimulus presentation. Results indicate that the acoustically active region on the STG is a separate auditory area, functionally distinct from the HG auditory field(s). We refer to this acoustically sensitive area of the STG as the posterior lateral superior temporal area (PLST). Electrical stimulation of HG resulted in short-latency EPs in an area that overlaps PLST, indicating that PLST receives a corticocortical input, either directly or indirectly, from HG. These physiological findings are in accord with anatomic evidence in humans and in nonhuman primates that the superior temporal cortex contains multiple interconnected auditory areas.

Journal ArticleDOI
TL;DR: Repeated within‐subject stimulus presentation indicated that differences across subjects were not due to inconsistent stimulus presentation, and it is hypothesized that these features may be associated with manual dexterity and coordination of the hands, a characteristic generally restricted to the primate lineage.
Abstract: The human somatosensory cortex in the Sylvian fissure was examined using functional magnetic resonance imaging to describe the number and internal organization of cortical fields present. Somatic stimuli were applied to the lips, face, hand, trunk, and foot of 18 human subjects. Activity patterns were transposed onto three-dimensional magnetic resonance images of the brain so that the location of activity associated with the different stimuli could be related to specific regions of the cortex. There were several consistent findings. First, there were three regions of activity in the lateral sulcus associated with stimulation of the contralateral body. The most consistent locus of activation was on the upper bank of the lateral sulcus, continuing onto the operculum. The other two areas, one rostral and one caudal to this large central area, were smaller and were activated less consistently. Second, when activity patterns in the large central area resulting from stimulation of all body parts were considered, this region appeared to contain two fields that corresponded in location and somatotopic organization to the second somatosensory area (SII) and the parietal ventral area (PV). Finally, patterns of activation within SII and PV were somewhat variable across subjects. Repeated within-subject stimulus presentation indicated that differences across subjects were not due to inconsistent stimulus presentation. Comparisons with other mammals suggest that some features of organization are found only in primates. It is hypothesized that these features may be associated with manual dexterity and coordination of the hands, a characteristic generally restricted to the primate lineage.

Journal ArticleDOI
TL;DR: The proposed corresponding lateral line nerve for this head segment, the middle lateral line, appears to develop normally, and the middle and posterior nerves do not form a posterior entry zone in the absence of a glossopharyngeal root in val mutants, but instead course anteriorly to join the preotic nerves.
Abstract: We describe the organization of lateral line nerves and ganglia in the embryonic zebrafish, Danio rerio. Two lateral line nerves are found anterior to the otic vesicle: the anterodorsal nerve innervates neuromasts of the supraorbital, infraorbital, and otic lines, whereas the anteroventral nerve innervates the mandibular and opercular lines. An additional two lateral line nerves are found posterior to the otic vesicle: the middle lateral line nerve innervates the middle line, whereas the posterior nerve innervates the occipital dorsal and posterior trunk lines. Preotic nerves converge on a single entry zone into the central nervous system at the facial motor root (mVII), as do axons of the octaval nerve. Postotic nerves converge to a posterior entry zone at the glossopharyngeal root. Both lateral line ganglia and neuromasts develop on a stereotypical schedule. To examine the segmental relationships among cranial ganglia, neural crest, and hindbrain, lateral line organization was analyzed in valentino mutants, which have disruptions in the development of rhombomeres 5-7 and in the third arch neural crest, and are missing glossopharyngeal motor neurons. The proposed corresponding lateral line nerve for this head segment, the middle lateral line, appears to develop normally. However, the middle and posterior nerves do not form a posterior entry zone in the absence of a glossopharyngeal root in val mutants, but instead course anteriorly to join the preotic nerves.

Journal ArticleDOI
TL;DR: The results indicate: (1) that rat orbital and medial PFC possesses an organisation broadly similar to that of the primate; and (2) that subdivisions within the rat orbital, medial, and lateral PFC can be recognised on the basis of projections to distinct PAG columns.
Abstract: We utilised retrograde and anterograde tracing procedures to study the origin and termination of prefrontal cortical (PFC) projections to the periaqueductal gray (PAG) in the rat. A previous study, in the primate, had demonstrated that distinct subgroups of PFC areas project to specific PAG columns. Retrograde tracing experiments revealed that projections to dorsolateral (dlPAG) and ventrolateral (vlPAG) periaqueductal gray columns arose from medial PFC, specifically prelimbic, infralimbic, and anterior cingulate cortices. Injections made in the vlPAG also labeled cells in medial, ventral, and dorsolateral orbital cortex and dorsal and posterior agranular insular cortex. Other orbital and insular regions, including lateral and ventrolateral orbital, ventral agranular insular, and dysgranular and granular insular cortex did not give rise to appreciable projections to the PAG. Anterograde tracing experiments revealed that the projections to different PAG columns arose from specific PFC areas. Projections from the caudodorsal medial PFC (caudal prelimbic and anterior cingulate cortices) terminated predominantly in dlPAG, whereas projections from the rostroventral medial PFC (rostral prelimbic cortex) innervated predominantly the vlPAG. As well, consistent with the retrograde data, projections arising from select orbital and agranular insular cortical areas terminated selectively in the vlPAG. The results indicate: (1) that rat orbital and medial PFC possesses an organisation broadly similar to that of the primate; and (2) that subdivisions within the rat orbital and medial PFC can be recognised on the basis of projections to distinct PAG columns.

Journal ArticleDOI
TL;DR: Initial ultrastructural evaluation via preembedding immunogold techniques revealed substantial cytoplasmic NET immunoreactivity in axon terminals within the prelimbic prefrontal cortex, consistent with postulates of regulated trafficking controlling neurotransmitter clearance.
Abstract: Norepinephrine (NE) transporters (NETs) constitute the primary mechanism for inactivation of synaptically released NE, are targets for multiple antidepressants and psychostimulants, and have been reported to be deficient in affective and autonomic disorders. Although the regional distribution of NETs has been defined through synaptosomal transport and autoradiographic approaches, NET protein expression has yet to be characterized fully in the central nervous system (CNS). We identified a cytoplasmic NET epitope (amino acids 585‐602) and corresponding antibody (43411) that permits cellular localization of endogenous NET expression in the CNS and periphery. In the adult rat brain, NET labeling was confined to noradrenergic neuronal somata, axons, and dendrites, including extensive arborizations within the hippocampus and cortex, but was absent from epinephrine- and dopamine-containing neurons. Intracerebroventricular anti-dopamine b-hydroxylase/saporin, a treatment that destroys a majority of noradrenergic neurons and their projections, validated the specificity of the 43411 antibody. At the level of light microscopy, 43411 labeling colocalized with the axonal markers syntaxin, synaptophysin, and SNAP-25. Indirect immunofluorescence revealed a nonuniform pattern of NET expression along axons, particularly evident within sympathetic fibers of the vas deferens, reflecting a high degree of spatial organization of NE clearance. NET labeling in somata was intracellular and absent from plasma membranes. Among nonneuronal cells, glial cells lacked NET immunoreactivity, whereas CNS ependymal cells were an unexpected site of labeling. NET immunoreactivity was also evident in a subset of adrenal chromaffin cells where labeling appeared to be predominantly associated with intracellular vesicles. Initial ultrastructural evaluation via preembedding immunogold techniques also revealed substantial cytoplasmic NET immunoreactivity in axon terminals within the prelimbic prefrontal cortex, consistent with postulates of regulated trafficking controlling neurotransmitter clearance. NET visualization should be of significant benefit in evaluating neuronal injury resulting from chronic drug exposure and in disease states. J. Comp. Neurol. 420:211‐232, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It is concluded that the lack of TN‐R initially and continuously disturbs the molecular scaffolding of extracellular matrix components in perineuronal nets and may interfere with the development of the specific micromilieu of the ensheathed neurons and adjacent glial cells and may also permanently change their functional properties.
Abstract: The extracellular matrix glycoprotein tenascin-R (TN-R), colocalizing with hyaluronan, phosphacan, and aggregating chondroitin sulphate proteoglycans in the white and grey matter, is accumulated in perineuronal nets that surround different types of neurons in many brain regions. To characterize the role of TN-R in the formation of perineuronal nets, we studied their postnatal development in wild-type mice and in a TN-R knock-out mutant by using the lectin Wisteria floribunda agglutinin and an antibody to nonspecified chondroitin sulphate proteoglycans as established cytochemical markers. We detected the matrix components TN-R, hyaluronan, phosphacan, neurocan, and brevican in the perineuronal nets of cortical and subcortical regions. In wild-type mice, lectin-stained, immature perineuronal nets were first seen on postnatal day 4 in the brainstem and on day 14 in the cerebral cortex. The staining intensity of these nets for TN-R, hyaluronan, phosphacan, neurocan, and brevican was extremely weak or not distinguishable from that of the surrounding neuropil. However, all markers showed an increase in staining intensity of perineuronal nets reaching maximal levels between postnatal days 21 and 40. In TN-R-deficient animals, the perineuronal nets tended to show a granular component within their lattice-like structure at early stages of development. Additionally, the staining intensity in perineuronal nets was reduced for brevican, extremely low for hyaluronan and neurocan, and virtually no immunoreactivity was detectable for phosphacan. The granular configuration of perineuronal nets became more predominant with advancing age of the mutant animals, indicating the continued abnormal aggregation of chondroitin sulphate proteoglycans complexed with hyaluronan. As shown by electron microscopy in the cerebral cortex, the disruption of perineuronal nets was not accompanied by apparent changes in the synaptic structure on net-bearing neurons. The regional distribution patterns and the temporal course of development of perineuronal nets were not obviously changed in the mutant. We conclude that the lack of TN-R initially and continuously disturbs the molecular scaffolding of extracellular matrix components in perineuronal nets. This may interfere with the development of the specific micromilieu of the ensheathed neurons and adjacent glial cells and may also permanently change their functional properties.

Journal ArticleDOI
TL;DR: The first detailed, quantitative data on the spatial sensitivity of neurons in the anterior part of the inferior temporal cortex (area TE) in awake, fixating monkeys suggest that TE neurons can code for the position of stimuli in the central region of the visual field.
Abstract: Recent findings in dorsal visual stream areas and computational work raise the question whether neurons at the end station of the ventral visual stream can code for stimulus position. The authors provide the first detailed, quantitative data on the spatial sensitivity of neurons in the anterior part of the inferior temporal cortex (area TE) in awake, fixating monkeys. They observed a large variation in receptive field (RF) size (ranging from 2.8 degrees to 26 degrees ). TE neurons differed in their optimal position, with a bias toward the foveal position. Moreover, the RF profiles of most TE neurons could be fitted well with a two-dimensional Gaussian function. Most neurons had only one region of high sensitivity and showed a smooth decline in sensitivity toward more distal positions. In addition, the authors investigated some of the possible determinants of such spatial sensitivity. First, testing with low-pass filtered versions of the stimuli revealed that the general preference for the foveal position and the size of the RFs was not due simply to TE neurons receiving input with a lower spatial resolution at more eccentric positions. The foveal position was still preferred after intense low-pass filtering. Second, although an increase in stimulus size consistently broadened spatial sensitivity profiles, it did not change the qualitative features of these profiles. Moreover, size selectivity of TE neurons was generally position invariant. Overall, the results suggest that TE neurons can code for the position of stimuli in the central region of the visual field.

Journal ArticleDOI
TL;DR: It is suggested that changes in modular glomerular activity patterns could underlie altered odor perception across odorant concentrations, and they provide additional support for a combinatorial, spatially based code in the olfactory system.
Abstract: To study the mechanism whereby odorants are encoded in the nervous system, we studied the glomerular-layer activity patterns in the rat olfactory bulb evoked by closely related odorants from different chemical families. These odorants had a common straightchain hydrocarbon structure, but differed systematically in their functional groups. Neural activity was mapped across the entire glomerular layer by using the [ 14 C]2-deoxyglucose method. Group responses were averaged and compared by using data matrices. The glomerular activity patterns that resulted from this analysis were comprised of modules. Unique combinations of modules were activated by each odorant, demonstrating what may be part of the neural code for odorants. Most of the modules were clustered together in the bulb, perhaps providing for enhanced contrast between related chemicals by means of lateral inhibition. We also determined whether changes in odorant concentration would affect spatial patterns of glomerular activity. Two odorants, pentanal and 2-hexanone, evoked different patterns at increased concentrations, with additional glomeruli being recruited at a great distance from glomeruli in which activity was evoked at lower concentrations. Humans report that both of these odorants change in perceived odor with increasing concentration. Three other odorants (pentanoic acid, methyl pentanoate, and pentanol) did not recruit new areas of glomerular activation with increasing concentration, and humans do not report a changed odor across concentrations of these odorants. The results suggest that changes in modular glomerular activity patterns could underlie altered odor perception across odorant concentrations, and they provide additional support for a combinatorial, spatially based code in the olfactory system. J. Comp. Neurol. 422:496 ‐509, 2000. © 2000 Wiley-Liss, Inc. Indexing terms: chemical senses; 2-deoxyglucose; 2-hexanone; mapping; odor; pentanal

Journal ArticleDOI
TL;DR: The results suggest that the GPe is an important integrative locus in primate basal ganglia that allows single GPe neurons to exert a multifarious effect not only on the STN, which is the claimed GPe target, but also on the two major output structures of the basal Ganglia, the SNr and the GPi.
Abstract: Axonal projections arising from the external segment of the globus pallidus (GPe) in cynomolgus monkeys (Macaca fascicularis) were mapped after labeling small pools (5–15 cells) of neurons with biotinylated dextran amine. Seventy-six single axons were reconstructed from serial sagittal sections with a camera lucida. The majority of labeled GPe cells displayed long, aspiny, and poorly branched dendrites that arborized mostly along the sagittal plane, whereas others showed dendrites radiating in all directions. Numerous GPe axons emitted short, intranuclear collaterals that arborized close to their parent cell body. Based on their axonal targets, four distinct types of GPe projection neurons have been identified: 1) neurons that project to the internal segment of the globus pallidus (GPi), the subthalamic nucleus (STN), and the substantia nigra, pars reticulata (SNr; 13.2%); 2) neurons that target the GPi and the STN (18.4%); 3) neurons that project to the STN and the SNr (52.6%); and 4) neurons that target the striatum (15.8%). Labeled GPe axons displayed large varicosities that often were closely apposed to the somata and proximal dendrites of STN, GPi, and SNr neurons. At striatal levels, however, GPe axons displayed small axonal varicosities that did not form perineuronal nets. These results suggest that the GPe is an important integrative locus in primate basal ganglia. This nucleus harbors several subtypes of projection neurons that are endowed with a highly patterned set of collaterals. This organization allows single GPe neurons to exert a multifarious effect not only on the STN, which is the claimed GPe target, but also on the two major output structures of the basal ganglia, the SNr and the GPi. J. Comp. Neurol. 417:17–31, 2000. ©2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The results indicate that HBDs are present in the pilocarpine model of temporal lobe epilepsy, confirm the presence of H BDs in the kainate model, and show that Hbds are postsynaptic to mossy fibers.
Abstract: Mossy fiber sprouting into the inner molecular layer of the dentate gyrus is an important neuroplastic change found in animal models of temporal lobe epilepsy and in humans with this type of epilepsy. Recently, we reported in the perforant path stimulation model another neuroplastic change for dentate granule cells following seizures: hilar basal dendrites (HBDs). The present study determined whether status epilepticus-induced HBDs on dentate granule cells occur in the pilocarpine model of temporal lobe epilepsy and whether these dendrites are targeted by mossy fibers. Retrograde transport of biocytin following its ejection into stratum lucidum of CA3 was used to label granule cells for both light and electron microscopy. Granule cells with a heterogeneous morphology, including recurrent basal dendrites, and locations outside the granule cell layer were observed in control preparations. Preparations from both pilocarpine and kainate models of temporal lobe epilepsy also showed granule cells with HBDs. These dendrites branched and extended into the hilus of the dentate gyrus and were shown to be present on 5% of the granule cells in pilocarpine-treated rats with status epilepticus, whereas control rats had virtually none. Electron microscopy was used to determine whether HBDs were postsynaptic to axon terminals in the hilus, a site where mossy fiber collaterals are prevalent. Labeled granule cell axon terminals were found to form asymmetric synapses with labeled HBDs. Also, unlabeled, large mossy fiber boutons were presynaptic to HBDs of granule cells. These results indicate that HBDs are present in the pilocarpine model of temporal lobe epilepsy, confirm the presence of HBDs in the kainate model, and show that HBDs are postsynaptic to mossy fibers. These new mossy fiber synapses with HBDs may contribute to additional recurrent excitatory circuitry for granule cells.

Journal ArticleDOI
TL;DR: The present results suggest the participation of androgens in the regulation of various hypothalamic processes that are sexually dimorphic in men and women using the antibody PG21.
Abstract: The present study reports for the first time the distribution of androgen receptor immunoreactivity (AR-ir) in the human hypothalamus of ten human subjects (five men and five women) ranging in age between 20 years and 39 years using the antibody PG21. Prolonged postmortem delay (72:00 hours) or fixation time (100 days) did not influence the AR-ir. In men, intense nuclear AR-ir was found in neurons of the horizontal limb of the diagonal band of Broca, in neurons of the lateromamillary nucleus (LMN), and in the medial mamillary nucleus (MMN). An intermediate nuclear staining was found in the diagonal band of Broca, sexually dimorphic nucleus of the preoptic area, paraventricular nucleus, suprachiasmatic nucleus, ventromedial nucleus, and infundibular nucleus, whereas weaker labeling was found in the bed nucleus of the stria terminalis, medial preoptic area, dorsal and ventral zones of the periventricular nucleus, supraoptic nucleus, and nucleus basalis of Meynert. In most brain areas, women revealed less staining than men. In the LMN and the MMN, a strong sex difference was found. Cytoplasmic labeling was observed in neurons of both sexes, although women showed a higher variability in the intensity of such staining. However, no sex differences in AR-ir were observed in the bed nucleus of the stria terminalis, the nucleus basalis of Meynert, or the islands of Calleja. Species differences and similarities of the AR-ir distribution are discussed. The present results suggest the participation of androgens in the regulation of various hypothalamic processes that are sexually dimorphic.

Journal ArticleDOI
TL;DR: The results suggest that the subdivisions of the auditory thalamus have consistent patterns of laminar distribution to different cortical areas, that an average of five or more layers receive significant input in a specific area, and that a given thalamic nucleus can influence areas as far as 20 mm apart.
Abstract: Thalamocortical projections were studied in adult cats using biotinylated dextran amines, wheat germ agglutinin conjugated to horseradish peroxidase, and autoradiography with tritiated leucine and/or proline. The input from 7 architectonically defined nuclei to 14 auditory cortical fields was characterized qualitatively and quantitatively. The principal results were that 1) every thalamic nucleus projected to more than 1 field (range, 4-14 fields; mean, 7 fields); 2) only the projection from the ventral division to some primary fields (primary auditory cortex and posterior auditory cortex) had a periodic, clustered distribution, whereas the input from other divisions to nonprimary areas was continuous; 3) layers III-V received >85% of the total axonal profiles; 4) in most experiments, five or more layers were labeled; 5) the projections to nonprimary auditory areas had many laterally oriented axons; 6) the heaviest input to layer I in all experiments was usually in its upper half, suggesting a sublaminar arrangement; 7) the largest axonal trunks (up to 6 microm in diameter) arose from the medial division and ended in layer Ia, where they ran laterally for long distances; 8) there were three projection patterns: type 1 had its peak in layers III-IV with little input to layer I, and it arose from the ventral division and the dorsal superficial, dorsal, and suprageniculate nuclei of the dorsal division; type 2 had heavy labeling in layer I and less in layers III-IV, arising from the dorsal division nuclei primarily, especially the caudal dorsal and deep dorsal nuclei; and type 3 was a trimodal concentration in layers I, III-IV, and VI that originated chiefly in the medial division and had the lowest density of labeling; and 9) the quantitative profiles with the three methods were very similar. The results suggest that the subdivisions of the auditory thalamus have consistent patterns of laminar distribution to different cortical areas, that an average of five or more layers receive significant input in a specific area, that a given thalamic nucleus can influence areas as far as 20 mm apart, that the first information to arrive at the cortex may reach layer I by virtue of the giant axons, and that several laminar patterns of auditory thalamocortical projection exist. The view that the auditory thalamus (and perhaps other thalamic nuclei) serves mainly a relay function underestimates its many modes for influencing the cortex on a laminar basis.

Journal ArticleDOI
TL;DR: The distribution of aromatase suggests a role for aromatization in the regulation of pre‐ and postsynaptic function in steroid sensitive areas of the songbird forebrain and reveals elaborate, spinous dendritic arbors, fine‐beaded axons, and punctate terminals of telencephalic neurons that may synthesize estrogen.
Abstract: In songbirds, aromatase (estrogen synthase) activity and mRNA are readily detectable in the brain. This neural aromatization presumably provides estrogen to steroid-sensitive targets via autocrine, paracrine, and synaptic mechanisms. The location of immunoreactive protein, however, has been difficult to describe completely, particularly in distal dendrites, axons, and terminals of the forebrain. Here we describe the neuroanatomical distribution of aromatase in the zebra finch by using a novel antibody raised specifically against zebra finch aromatase. The distribution of aromatase-positive somata in the zebra finch brain is in excellent agreement with previous reports. Additionally, this antibody reveals elaborate, spinous dendritic arbors, fine-beaded axons, and punctate terminals of telencephalic neurons that may synthesize estrogen. Some of these axon-like fibers extend into the high vocal center (HVC) and the robust nucleus of the archistriatum (RA) in males and females, suggesting a role for presynaptic aromatization in cellular processes within these loci. Adult males have more aromatase-positive fibers in the caudomedial neostriatum (NCM) and the preoptic area (POA) compared to females, despite the lack of detectable sex differences in the number of immunoreactive somata at these loci. Thus, the compartmentalization of aromatase in dendrites and axons may serve a sexually dimorphic function in the songbird. Finally, in adult males, aromatase expression is down-regulated by circulating estradiol in the hippocampus, but not in the NCM or POA. The distribution of aromatase suggests a role for aromatization in the regulation of pre- and postsynaptic function in steroid sensitive areas of the songbird forebrain.

Journal ArticleDOI
TL;DR: Data indicate that alterations in the number of nucleus basalis neurons containing trkA immunoreactivity occurs early and are not accelerated from the transition from MCI to mild AD.
Abstract: Recent studies indicate that there is a marked reduction in trkA–containing nucleus basalis neurons in end–stage Alzheimer's disease (AD). We used unbiased stereological counting procedures to determine whether these changes extend to individuals with mild cognitive impairment (MCI) without dementia from a cohort of people enrolled in the Religious Orders Study. Thirty people (average age 84.7 years) came to autopsy. All individuals were cognitively tested within 12 months of death (average MMSE 24.2). Clinically, 9 had no cognitive impairment (NCI), 12 were categorized with MCI, and 9 had probable AD The average number of trkA–immunoreactive neurons in persons with NCI was 196, 632 ± 12,093 (n = 9), for those with MCI it was 106,110 ± 14,565, and for those with AD it was 86,978 ± 12,141. Multiple comparisons showed that both those with MCI and those with AD had significant loss in the number of trkA–containing neurons compared to those with NCI (46% decrease for MCI, 56% for AD). An analysis of variance revealed that the total number of neurons containing trkA immunoreactivity was related to diagnostic classification (P < 0.001), with a significant reduction in AD and MCI compared to NCI but without a significant difference between MCI and AD. Cell density was similarly related to diagnostic classification (P < 0.001). There was a significant correlation with the Boston Naming Test and with a global score measure of cognitive function. The number of trkA–immunoreactive neurons was not correlated with MMSE, age at death, education, apolipoprotein E allele status, gender, or Braak score. These data indicate that alterations in the number of nucleus basalis neurons containing trkA immunoreactivity occurs early and are not accelerated from the transition from MCI to mild AD. J. Comp. Neurol. 427:19–30, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It is concluded that sciatic nerve transection in adult rats leads to a slowly developing but relatively profound loss of primary afferent neurons that is more severe for B‐cells, and that neither A‐ or B‐ cells change size significantly.
Abstract: The present study deals with changes in numbers and sizes of primary afferent neurons (dorsal root ganglion [DRG] cells) after sciatic nerve transection. We find that this lesion in adult rats leads to death of some DRG cells by 8 weeks and 37% by 32 weeks after the lesion. The loss of cells appears earlier in and is more severe in B-cells (small, dark cells with unmyelinated axons) than A-cells (large, light cells with myelinated axons). With regard to mean cell volumes, there is a tendency for both categories of DRG cells to be smaller, but except for isolated time points, these differences are not statistically significant. These findings differ from most earlier reports in that the cell loss takes place later than usually reported, that the loss is more severe for B-cells, and that neither A- or B-cells change size significantly. Accordingly, we conclude that sciatic nerve transection in adult rats leads to a slowly developing but relatively profound loss of primary afferent neurons that is more severe for B-cells. These results can serve as a basis for studies to determine the effectiveness of trophic or survival factors in avoiding axotomy induced cell death. J. Comp. Neurol. 422:172–180, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It is shown that PACAP was co‐stored with glutamate in a subset of retinal ganglion cells and in nerve terminals in the retino‐recipient area of the SCN, providing an anatomical basis for the recent demonstration of the interaction between these two transmitters on theSCN phase response at night.
Abstract: The retinohypothalamic tract (RHT) relays photic information from the eyes to the suprachiasmatic nucleus (SCN). Activation of this pathway plays a role in adjusting circadian timing to the light/dark environment. Two transmitters, glutamate and pituitary adenylate cyclase activating polypeptide (PACAP) having phase shifting capacity during the night and day, respectively, are located in the RHT. Using double staining immunohistochemistry at the light and electron microscopic level, we showed that PACAP was co-stored with glutamate in a subset of retinal ganglion cells and in nerve terminals in the retino-recipient area of the SCN. These findings provide an anatomical basis for the recent demonstration of the interaction between these two transmitters on the SCN phase response at night.

Journal ArticleDOI
TL;DR: The results reveal that, in contrast to current beliefs, the primate STN is not a monolithic entity, which harbors several subtypes of projection neurons, each endowed with a highly patterned set of collaterals.
Abstract: Axonal projections arising from the subthalamic nucleus (STN) in cynomolgus monkeys (Macaca fascicularis) were traced after labeling small pools (5-15 cells) of neurons with biotinylated dextran amine. Seventy-five single axons were reconstructed from serial sagittal sections with a camera lucida. Most of the STN labeled cells displayed five to eight long, sparsely spined dendrites that arborized mostly along the main axis of the nucleus. Based on their axonal targets, five distinct types of STN projection neurons have been identified: 1) neurons projecting to the substantia nigra pars reticulata (SNr), the internal (GPi) and external (GPe) segments of the globus pallidus (21.3%); 2) neurons targeting SNr and GPe (2. 7%); 3) neurons projecting to GPi and GPe (48%); 4) neurons targeting GPe only (10.7 %); and 5) neurons with axons that coursed toward the sriatum, but whose terminal arborization could not be visualized in detail (17.3%). Axons of the first two types bifurcated into rostral subthalamopallidal and caudal pallidonigral branches. However, the majority of STN axons had only a single branch that coursed rostrally toward the pallidum and striatum. These results reveal that, in contrast to current beliefs, the primate STN is not a monolithic entity. This nucleus harbors several subtypes of projection neurons, each endowed with a highly patterned set of collaterals. This organization allows STN neurons to exert a multifarious effect not only on the GPe, with which the STN is reciprocally connected, but also on the two major output structures of the basal ganglia, the SNr and the GPi.

Journal ArticleDOI
TL;DR: It is argued that this relative synaptic paucity is typical for driver inputs (from retina), whereas modulator inputs (all others) require many more synapses to achieve their function.
Abstract: Previous electron microscopic studies of synaptic terminal distributions in the lateral geniculate nucleus have been flawed by potential sampling biases favoring larger synapses. We have thus re-investigated this in the geniculate A-laminae of the cat with an algorithm to correct this sampling bias. We used serial reconstructions with the electron microscope to determine the size of each terminal and synaptic type. We observed that RL (retinal) terminals are largest, F (local, GABAergic, inhibitory) terminals are intermediate in size, and RS (cortical and brainstem) terminals are smallest. We also found that synapses from RL terminals are largest, and thus most oversampled, and we used synaptic size data to correct for sampling errors. Doing so, we found that the relative synaptic percentages overall are 11.7% for RL terminals, 27.5% for F, and 60.8% for RS. Furthermore, we distinguished between relay cells and interneurons with post-embedding immunocytochemistry for GABA (relay cells are GABA negative and interneurons are GABA positive). Onto relay cells, RL terminals contributed 7.1%, F terminals contributed 30.9%, and RS terminals contributed 62.0%. Onto interneurons, RL terminals contributed 48.7%, F terminals contributed 24.4%, and RS terminals contributed 26.9%. We also found that RL terminals included many more separate synaptic contact zones (9.1 +/- 1.6) than did F terminals (2.6 +/- 0.2) or RS terminals (1.02 +/- 0.02). We used these data plus the calculation of overall percentages of each synaptic type to compute the relative percentage of each terminal type in the neuropil: RL terminals represent 1.8%, F terminals represent 14.5%, and RS terminals represent 83.7%. We argue that this relative synaptic paucity is typical for driver inputs (from retina), whereas modulator inputs (all others) require many more synapses to achieve their function.