scispace - formally typeset
Journal ArticleDOI

Alcohol combustion chemistry

Reads0
Chats0
TLDR
A detailed overview of recent results on alcohol combustion can be found in this paper, with a particular emphasis on butanols and other linear and branched members of the alcohol family, from methanol to hexanols.
About
This article is published in Progress in Energy and Combustion Science.The article was published on 2014-10-01. It has received 676 citations till now. The article focuses on the topics: Alcohol fuel & Combustion.

read more

Citations
More filters
Journal ArticleDOI

Methanol as a fuel for internal combustion engines

TL;DR: In this paper, the use of methanol as a pure fuel or a blend component for internal combustion engines (ICEs) is discussed, highlighting the differences with fuels such as ethanol and gasoline.
Journal ArticleDOI

Alternative fuels for internal combustion engines

TL;DR: In this article, a review of potential alternative fuels for automotive engine application for both spark ignition (SI) and compression ignition (CI) engines is presented, which includes applications of alternative fuels in advanced combustion research applications.
Journal ArticleDOI

A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines

TL;DR: In this paper, the fundamental combustion and emissions properties of advanced biofuels are reviewed, and their impact on engine performance is discussed, in order to guide the selection of optimal conversion routes for obtaining desired fuel combustion properties.
Journal ArticleDOI

A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures

TL;DR: In this article, a brief review of spherical flame propagation method, counterflow/stagnation burner method, heat-flux method, annular stepwise method, externally heated diverging channel method, and Bunsen method is presented.
Journal ArticleDOI

Recent progress in gasoline surrogate fuels

TL;DR: A comprehensive review of the available experimental and chemical kinetic studies which have been performed to better understand the combustion properties of gasoline fuels and their surrogates can be found in this paper, where a detailed analysis is presented for the various classes of compounds used in formulating gasoline surrogate fuels, including n-paraffins, isoparaffin, olefins, naphthenes and aromatics.
References
More filters
Journal ArticleDOI

Kinetic modeling of gasoline surrogate components and mixtures under engine conditions

TL;DR: In this article, an improved version of the kinetic model was used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation, focusing attention on the mixing effects of the fuel components.
Journal ArticleDOI

Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature

TL;DR: In this paper, the effect of adding simulated combustion products to stoichiometric isooctane-air mixtures was also studied for diluent mass fractions f = 0−0.2.
Journal ArticleDOI

Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels

TL;DR: In this paper, a detailed kinetic mechanism for the pyrolysis and combustion of a large variety of fuels at high temperature conditions is presented, and the authors identify aspects of the mechanism that require further revision.
Journal ArticleDOI

A detailed chemical kinetic model for high temperature ethanol oxidation

TL;DR: A detailed chemical kinetic model for ethanol oxidation has been developed and validated against a variety of experimental data sets as discussed by the authors, and good agreement was found in modeling of the data sets obtained from the five different experimental systems.
Journal ArticleDOI

Chemical kinetics of hydrocarbon ignition in practical combustion systems

TL;DR: In this paper, two major chain-branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide.
Related Papers (5)