Analyzing organophosphate pesticide-serum albumin binding interaction: a combined STD NMR and molecular docking study
24 Mar 2021-Journal of Biomolecular Structure & Dynamics (Taylor & Francis)-Vol. 39, Iss: 5, pp 1865-1878
TL;DR: In Vitro analysis of the interaction of organophosphate pesticides (OP) with bovine serum albumin (BSA) is crucial to understand their potential effects at the molecular level and Saturation Transfer Difference NMR experiments in conjunction with molecular docking studies revealed a high binding affinity of OP-BSA complexes through non-covalent interaction.
Abstract: In Vitro analysis of the interaction of organophosphate pesticides (OP) with bovine serum albumin (BSA) is crucial to understand their potential effects at the molecular level. In this context, we ...
...read more
Citations
More filters
TL;DR: In this article, a review of OPC-based enzymes is presented, including their structural differences and identity, mechanisms, and specificity of catalytic action, including results of computational modeling.
Abstract: Organophosphorus compounds (OPCs) are able to interact with various biological targets in living organisms, including enzymes. The binding of OPCs to enzymes does not always lead to negative consequences for the body itself, since there are a lot of natural biocatalysts that can catalyze the chemical transformations of the OPCs via hydrolysis or oxidation/reduction and thereby provide their detoxification. Some of these enzymes, their structural differences and identity, mechanisms, and specificity of catalytic action are discussed in this work, including results of computational modeling. Phylogenetic analysis of these diverse enzymes was specially realized for this review to emphasize a great area for future development(s) and applications.
2 citations
TL;DR: In this paper, the role of intermolecular interactions, specifically halogen and chalcogen bonds, in EDC recognition processes is discussed, with an overview of the latest advances in the study of disruption mechanisms.
Abstract: Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances able to mimic, interfere with, or block endogenous hormones, thus disrupting the normal function of the endocrine system Most of them are largely applied in agriculture and industry As a result, humans are chronically exposed to mixtures of EDCs Their adverse effect on human health may appear long after exposure, making it difficult to assess their full impact Thus, understanding the molecular basis of recognition of suspected EDCs by their biological targets is fundamental to get insight into their mechanism of action This review will focus on the role of intermolecular interactions, specifically halogen and chalcogen bonds, in EDC recognition processes, offering an overview of the latest advances in the study of disruption mechanisms
1 citations
TL;DR: In this article, the authors used proton nuclear magnetic resonance (1H NMR) to study the true esterase activity of albumin, using the example of bovine serum albumin (BSA) and p-nitrophenyl acetate (NPA).
Abstract: Serum albumin possesses esterase and pseudo-esterase activities towards a number of endogenous and exogenous substrates, but the mechanism of interaction of various esters and other compounds with albumin is still unclear. In the present study, proton nuclear magnetic resonance (1H NMR) has been applied to the study of true esterase activity of albumin, using the example of bovine serum albumin (BSA) and p-nitrophenyl acetate (NPA). The site of BSA esterase activity was then determined using molecular modelling methods. According to the data obtained, the accumulation of acetate in the presence of BSA in the reaction mixture is much more intense as compared with the spontaneous hydrolysis of NPA, which indicates true esterase activity of albumin towards NPA. Similar results were obtained for p-nitophenyl propionate (NPP) as substrate. The rate of acetate and propionate release confirms the assumption that there is a site of true esterase activity in the albumin molecule, which is different from the site of the pseudo-esterase activity Sudlow II. The results of molecular modelling of BSA and NPA interaction make it possible to postulate that Sudlow site I is the site of true esterase activity of albumin.
References
More filters
TL;DR: An overview of the CHARMM program as it exists today is provided with an emphasis on developments since the publication of the original CHARMM article in 1983.
Abstract: CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecu- lar simulation program. It has been developed over the last three decades with a primary focus on molecules of bio- logical interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estima- tors, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numer- ous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.
5,997 citations
TL;DR: On the basis of the thermochemical behavior of small molecule interactions, it is concluded that the strengthening of hydrogen bonds in the past decade, a complete thermodynamic description of the self-association of many proteins and their interactions is concluded.
Abstract: Reviewing the thermodynamic parameters characterizing self-association and ligand binding of proteins at 25 OC, we find AGO, AHo, AS\", and ACpo are often all of negative sign. It is thus not possible to account for the stability of association complexes of proteins on the basis of hydrophobic interactions alone. We present a conceptual model of protein association consisting of two steps: the mutual penetration of hydration layers causing disordering of the solvent followed by further short-range interactions. The net AGO for the complete association process is primarily determined by the positive entropy change accompanying the first step and the negative enthalpy change of the second step. On the basis of the thermochemical behavior of small molecule interactions, we conclude that the strengthening of hydrogen bonds in the I n the past decade, a complete thermodynamic description of the self-association of many proteins and their interactions From the Laboratory of Molecular Biology (P.D.R.) and Laboratory of Nutrition and Endocrinology (S.S.), National Institute of Arthritis, Metabolism and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20205. Received September 23, 1980. low dielectric macromolecular interior and van der Waals' interactions introduced as a consequence of the hydrophobic effect are the most important factors contributing to the observed negative values of AHo and ASo and hence to the stability of protein association complexes. The X-ray crystallographic structures of these complexes are consonant with this analysis. The tendency for protein association reactions to become entropy dominated and/or entropy-enthalpy assisted at low temperatures and enthalpy dominated at high temperatures (a consequence of the typically negative values of AC,\") arises from the diminution of the hydrophobic effect with increasing temperature which is a general property of the solvent, water. with small molecular substrates has become available. Concomitantly, X-ray crystallography has provided a detailed picture of some of these associations, and this has stimulated a number of theoretical studies (Levitt & Warshel, 1975; Gelin & Karplus, 1975; Chothia & Janin, 1975), based upon energetic considerations, to account for these structures. The This article not subject to U S . Copyright. Published 1981 by the American Chemical Society T H E R M O D Y N A M I C S O F P R O T E I N A S S O C I A T I O N V O L . 2 0 , N O . 1 1 , 1 9 8 1 3097 Table I: Thermodynamics of Protein Association' association process A G \" ~ AiY A s o , A c p o (kcal mol-') (kcal mol-l) (cal K-I mol-') (cal K-I mol-I) refb trypsin (bovine) + inhibitor (soybean) -14.6 8.6 78 -440 c, d deoxyhemoglobin S gelation -3.4 2.0 18 -200 e, f lysozyme self-association (indefinite) -3.9 -6 .4 -8.3 g glucagon trimerization -12.1 -3 1 -64 -430 h, i hemoglobin t haptoglobin -11.5 -3 3 -7 3 -940 i a-chymotrypsin dimerization -7.1 -35 -9 5 k, I S-peptide + S-protein (ribonuclease) -13 -40 -90 -1100 m, n All thermodynamic parameters expressed per mole of complex formed except the indefinite association cases of hemoglobin S and lysozyme for which the mole refers to the monomeric protein reacted. Unitary entropy and free energy are given for processes of defined stoichiometry. Standard states are hypothetical 1 M protein, pH at which the reaction was measured. All pHs were close to 7 except for trypsin, pH 5, haptoglobin, pH 5.5, and glucagon, pH 10.5. All data for 25 \"C except glucagon, T = 30 \"C. ence is to calorimetric work and the second is to X-ray crystallographic structure determination. al. (1974). e Rosset al. (1977). Wishner e t al. (1975). g Banerjee et al. (1975). Johnson et al. (1979). * Sasaki et al. (1975). For each entry, the first referSweet et Baugh & Trowbridge (1972). Lavialle et al. (1974). Shiao & Sturtevant (1969). lVandlen &Tulinsky (1973). Hearn et al. (1971). Wyckoff e t al. (1970). methodology and problems involved in such calculations have been critically reviewed by NBmethy & Scheraga (1977). In this paper we review the thermodynamics of protein association processes for the examples best characterized in terms of their chemistry and structure. From this survey we find that the thermodynamic parameters AGO, Ai?, AS\", and ACpo are predominantly of negative sign. This result poses severe difficulties for interpretations of protein association based upon the entropically driven hydrophobic effect. The aim of this paper is to attempt to account for the signs and magnitudes of these thermodynamic parameters for protein association reactions in terms of known molecular forces and the thermochemistry of small molecule interactions.
3,960 citations
TL;DR: The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 Å and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serumalbumin.
Abstract: The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 A. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and IIIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.
3,273 citations
TL;DR: This chapter provides an insight of the findings of past significant papers with the current knowledge of the recently determined high resolution X-ray structure of serum albumin and suggests that AFP may have a higher affinity for some unknown ligands important for fetal development.
Abstract: Publisher Summary This chapter provides an insight of the findings of past significant papers with the current knowledge of the recently determined high resolution X-ray structure of serum albumin. The most outstanding property of albumin is its ability to bind reversibly an incredible variety of ligands. The sequences of all albumins are characterized by a unique arrangement of disulfide double loops that repeat as a series of triplets. Albumin belongs to a multigene family of proteins that includes α- fetoprotein (AFP) and vitamin D-binding protein (VDP), also known as G complement (Gc) protein. Although AFP is considered the fetal counterpart of albumin, its binding properties are distinct and it is suggested that AFP may have a higher affinity for some unknown ligands important for fetal development. Domain structure and the arrangement of the disulfides, the surface charge distribution, and the conformational flexibility of the albumin molecule are described. The nature of ligand binding, including small organics, long-chain fatty acids, and metals, to multiple sites on the albumin molecule is clearly depicted. The chapter concludes with the perceptive comments on future directions being taken to explore the structure and function of this fascinating protein.
2,847 citations
TL;DR: Fast identification of binding activity directly from mixtures of potential ligands is possible with the NMR method described, which is based on saturation transfer to molecules in direct contact to a protein.
Abstract: Fast identification of binding activity directly from mixtures of potential ligands is possible with the NMR method described, which is based on saturation transfer to molecules in direct contact to a protein. In addition, the ligand's binding epitope is easily identified. High sensitivity and ease of use are the principal advantages of this method. The picture shows the normal 1D NMR spectrum of a mixture and the spectrum obtained by applying the STD method, which exclusively shows signals from molecules with binding affinity.
1,329 citations