scispace - formally typeset
Open AccessJournal ArticleDOI

ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes

Reads0
Chats0
TLDR
A concise database for BLAST using a Bio-Edit interface that can detect AR genetic determinants in bacterial genomes and can rapidly and easily discover putative new AR geneticeterminants is created.
Abstract
ARG-ANNOT (Antibiotic Resistance Gene-ANNOTation) is a new bioinformatic tool that was created to detect existing and putative new antibiotic resistance (AR) genes in bacterial genomes. ARG-ANNOT uses a local BLAST program in Bio-Edit software that allows the user to analyze sequences without a Web interface. All AR genetic determinants were collected from published works and online resources; nucleotide and protein sequences were retrieved from the NCBI GenBank database. After building a database that includes 1,689 antibiotic resistance genes, the software was tested in a blind manner using 100 random sequences selected from the database to verify that the sensitivity and specificity were at 100% even when partial sequences were queried. Notably, BLAST analysis results obtained using the rmtF gene sequence (a new aminoglycoside-modifying enzyme gene sequence that is not included in the database) as a query revealed that the tool was able to link this sequence to short sequences (17 to 40 bp) found in other genes of the rmt family with significant E values. Finally, the analysis of 178 Acinetobacter baumannii and 20 Staphylococcus aureus genomes allowed the detection of a significantly higher number of AR genes than the Resfinder gene analyzer and 11 point mutations in target genes known to be associated with AR. The average time for the analysis of a genome was 3.35 ± 0.13 min. We have created a concise database for BLAST using a Bio-Edit interface that can detect AR genetic determinants in bacterial genomes and can rapidly and easily discover putative new AR genetic determinants.

read more

Citations
More filters
Posted ContentDOI

Phylogenetic background and habitat drive the genetic diversification of Escherichia coli

TL;DR: The phylogeny, genetic diversification, and habitat-association of 1,294 isolates representative of the phylogenetic diversity of more than 5,000, mostly non-clinical, isolates originating from humans, poultry, wild animals and water sampled from the Australian continent contribute to explain why epidemiological clones tend to emerge from specific phylogenetic groups in the presence of pervasive horizontal gene transfer across the species.
Journal ArticleDOI

Combining metagenomics and metatranscriptomics to study human, animal and environmental resistomes

TL;DR: Characterizing the collective ARGs (resistome) in host-associated and natural environments will deepen the understanding of the origin, evolution and transmission of ARGs.

Inferring phenotypes from genotypes with machine learning : an application to the global problem of antibiotic resistance

TL;DR: The overarching theme of this thesis is an application to the prediction of antibiotic resistance, a global public health problem of high significance, and it is demonstrated that algorithms can be used to accurately predict resistance phenotypes and contribute to the improvement of their understanding.
Journal ArticleDOI

Emergence of Metallo-β-Lactamases and OXA-48 Carbapenemase Producing Gram-Negative Bacteria in Hospital Wastewater in Algeria: A Potential Dissemination Pathway Into the Environment

TL;DR: In this paper , the authors assess the possible role of hospital sewage as reservoir and dissemination pathway of carbapenem-resistant Gram-negative bacilli (GNB) from a public hospital in Batna, Algeria.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Journal ArticleDOI

Identification of acquired antimicrobial resistance genes

TL;DR: A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created, and the method was evaluated on WGS chromosomes and plasmids of 30 isolates.
Journal ArticleDOI

Improved microbial gene identification with GLIMMER

TL;DR: Significant technical improvements to GLIMMER are reported that improve its accuracy still further, and a comprehensive evaluation demonstrates that the accuracy of the system is likely to be higher than previously recognized.
Journal ArticleDOI

Antibiotic resistance is ancient

TL;DR: Target metagenomic analyses of rigorously authenticated ancient DNA from 30,000-year-old Beringian permafrost sediments are reported and show conclusively that antibiotic resistance is a natural phenomenon that predates the modern selective pressure of clinical antibiotic use.
Related Papers (5)