scispace - formally typeset
Open AccessJournal ArticleDOI

Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease

TLDR
A novel floor-plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo is presented, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells.
Abstract
Human pluripotent stem cells (PSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of PSCs into specialized cells such as spinal motoneurons or midbrain dopamine (DA) neurons has been achieved. However, the effective use of PSCs for cell therapy has lagged behind. Whereas mouse PSC-derived DA neurons have shown efficacy in models of Parkinson's disease, DA neurons from human PSCs generally show poor in vivo performance. There are also considerable safety concerns for PSCs related to their potential for teratoma formation or neural overgrowth. Here we present a novel floor-plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor-plate precursors are derived from PSCs 11 days after exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signalling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of PSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in Parkinson's disease models using three host species. Long-term engraftment in 6-hydroxy-dopamine-lesioned mice and rats demonstrates robust survival of midbrain DA neurons derived from human embryonic stem (ES) cells, complete restoration of amphetamine-induced rotation behaviour and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell-based therapies in Parkinson's disease.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Stem cells as a promising therapeutic approach for Alzheimer’s disease: a review

TL;DR: There is a growing body of evidence supporting the promising therapeutic potential of stem cell transplantation, which might be attributed to the mechanistic actions exerted by stem cells such as inducing hippocampal neurogenesis, secreting paracrine factors, exerting anti-inflammatory activity, showing anti-amyloidogenic potential, and finally resulting in cognitive recovery.
Journal ArticleDOI

In vivo modeling of neuronal function, axonal impairment and connectivity in neurodegenerative and neuropsychiatric disorders using induced pluripotent stem cells.

TL;DR: To study the intrinsic axonal impairments and neuronal connectivity deficits in human disease iPSC-derived neurons, it is proposed to graft these cells into the physiological three-dimensional multi-structural environment of the central nervous system of rodent models to obtain relevant in vivo data.
Journal ArticleDOI

Using induced pluripotent stem cells for modeling Parkinson's disease.

TL;DR: Various iPSCs- based PD models either derived from PD patients through reprogramming technology or established by gene-editing technology are summarized, and the promising application of iPSC-based PD models for mechanistic studies and drug testing is summarized.
Journal ArticleDOI

Dopaminergic differentiation of schizophrenia hiPSCs.

TL;DR: A significant defect is demonstrated in the ability of the SZ hiPSC lines to differentiate to DA neurons, which is not solely indicative of the DA neuronal subtypes most relevant to SZ.
Journal ArticleDOI

Neonatal immune-tolerance in mice does not prevent xenograft rejection

TL;DR: In three strains of neonatal immune-intact mice, using two different brain transplant regimes and three independent stem cell types, it is conclusively shown that there is rapid rejection of the implanted cells.
References
More filters
Journal ArticleDOI

Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Journal ArticleDOI

Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling

TL;DR: Noggin/SB431542-based neural induction should facilitate the use of hES and hiPS cells in regenerative medicine and disease modeling and obviate the need for protocols based on stromal feeders or embryoid bodies.
Journal ArticleDOI

Efficient tumour formation by single human melanoma cells

TL;DR: Modifications to xenotransplantation assays can dramatically increase the detectable frequency of tumorigenic cells, demonstrating that they are common in some human cancers.
Journal ArticleDOI

Parkinson’s Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors

TL;DR: In this paper, the authors showed that fibroblasts from five patients with idiopathic Parkinson's disease can be efficiently reprogrammed and subsequently differentiated into dopaminergic neurons using Cre-recombinase excisable viruses.
Related Papers (5)