scispace - formally typeset
Journal ArticleDOI

Electrical Energy Storage for the Grid: A Battery of Choices

Reads0
Chats0
TLDR
The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract
The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

read more

Citations
More filters
Journal ArticleDOI

Smart Hybrids of Zn2GeO4 Nanoparticles and Ultrathin g‐C3N4 Layers: Synergistic Lithium Storage and Excellent Electrochemical Performance

TL;DR: In this paper, a hybrid of Zn2GeO4/g-C3N4 nanoparticles and ultrathin g-C 3N4 layers is proposed for Li-ion storage and diffusion pathway.
Journal ArticleDOI

Recent progress of advanced anode materials of lithium-ion batteries

TL;DR: In this paper, the most basic lithium ion battery anode material design is discussed, including carbon materials, various transition metal oxides, silicon and germanium, and then the progress of other anode materials are analyzed.
Journal ArticleDOI

Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries

TL;DR: In this paper, a reversible Zn/MnO2 battery with zinc hydroxide sulfate (Zn4(OH)6SO4·5H2O, ZHS) as the cathode has been designed, where active MnO2 is formed in situ during the initial charge process from the Mn(II)-containing ZnSO4 electrolyte.
Journal ArticleDOI

An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries

TL;DR: In this paper, the effect of the electrolyte (nature and concentration, as well as current rate, on the aging of the positive electrode during the operation of the battery is investigated by using differential charge curves.
References
More filters
Journal ArticleDOI

Issues and challenges facing rechargeable lithium batteries

TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Journal ArticleDOI

Building better batteries

TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

Challenges for Rechargeable Li Batteries

TL;DR: In this paper, the authors reviewed the challenges for further development of Li rechargeable batteries for electric vehicles and proposed a nonflammable electrolyte with either a larger window between its lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) or a constituent that can develop rapidly a solid/ electrolyte-interface (SEI) layer to prevent plating of Li on a carbon anode during a fast charge of the battery.
Journal ArticleDOI

Nanostructured materials for advanced energy conversion and storage devices

TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Related Papers (5)