scispace - formally typeset
Journal ArticleDOI

Electrical Energy Storage for the Grid: A Battery of Choices

Reads0
Chats0
TLDR
The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract
The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

read more

Citations
More filters
Journal ArticleDOI

Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries

TL;DR: In this article, the authors confine Sn4P3 in N-doped carbon fibers as anode for potassium-ion batteries with enhanced cycling stability and high rate capability (160.7 mA hr g−1 after 1,000 cycles at 500 mA g −1).
Journal ArticleDOI

Potassium Prussian Blue Nanoparticles: A Low‐Cost Cathode Material for Potassium‐Ion Batteries

TL;DR: In this paper, the capacity of a full-cell of a KIB battery with carbon nanoparticles was investigated and shown to have a capacity of 68.5 mAh at 100 mA g−1 and retains 93.4% of the capacity after 50 cycles.
Journal ArticleDOI

Gold-Supported Cerium-Doped NiOx Catalysts for Water Oxidation

TL;DR: In this article, a gold-supported NiCeOx catalyst is shown to have excellent catalytic activity due to synergistic geometric and electronic effects, and it is used for the oxygen-evolution reaction in alkaline media.
Journal ArticleDOI

Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes

TL;DR: A nonfilling carbon-coated porous silicon microparticle (nC-pSiMP) that contains accurate void space to accommodate Si expansion while not losing packing density, which allows for a high volumetric capacity and simple and scalable production.
References
More filters
Journal ArticleDOI

Issues and challenges facing rechargeable lithium batteries

TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Journal ArticleDOI

Building better batteries

TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

Challenges for Rechargeable Li Batteries

TL;DR: In this paper, the authors reviewed the challenges for further development of Li rechargeable batteries for electric vehicles and proposed a nonflammable electrolyte with either a larger window between its lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) or a constituent that can develop rapidly a solid/ electrolyte-interface (SEI) layer to prevent plating of Li on a carbon anode during a fast charge of the battery.
Journal ArticleDOI

Nanostructured materials for advanced energy conversion and storage devices

TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Related Papers (5)