scispace - formally typeset
Open AccessJournal ArticleDOI

Emissions of Anaerobically Produced Methane by Trees

TLDR
In this article, the authors report results from a greenhouse mesocosm study that indicate significant emissions of anaerobically produced CH4 transmitted to the atmosphere through broadleaf riparian tree species grown under flooded conditions.
Abstract
[1] Recent studies indicate that plants may be a previously overlooked but significant source of atmospheric CH4, though there is considerable disagreement on the mechanism of production. Our work sought to verify that woody deciduous trees grown under inundated conditions had the capacity for transporting CH4 from an anaerobic subsurface to the atmosphere and to consider if such a source could be important globally. Here, we report results from a greenhouse mesocosm study that indicate significant emissions of anaerobically produced CH4 transmitted to the atmosphere through broadleaf riparian tree species grown under flooded conditions. Using a leaf area normalized mean emission rate (0.7 ± 0.3 μg cm−2 hr−1), results were scaled globally for flooded forest regions and estimated to be 60 ± 20 Tg year−1, ∼10% of the global CH4 source. The carbon isotopic composition of CH4 emitted was found to be significantly enriched compared with expectations (δ13C ∼ −54‰) and provided an important isotopic constraint on the global source which coincides with the mean of the globally scaled greenhouse-based estimate.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The global methane budget 2000–2017

Marielle Saunois, +95 more
TL;DR: The second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modeling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations) as discussed by the authors.
Journal ArticleDOI

Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales

TL;DR: An up-to-date synthesis of estimates of global CH4 emissions from wetlands and other freshwater aquatic ecosystems is provided, major biogeophysical controls over CH4 emitters from wetlands are summarized, new frontiers in CH4 biogeochemistry are suggested, and relationships between methanogen community structure and CH4 dynamics in situ are examined.
Journal ArticleDOI

The global methane budget 2000–2012

Marielle Saunois, +81 more
TL;DR: The Global Carbon Project (GCP) as discussed by the authors is a consortium of multi-disciplinary scientists, including atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions.
Journal ArticleDOI

Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM

TL;DR: In this article, a new CH4 biogeochemistry model (CLM4Me) integrated in the land component (Community Land Model; CLM4) of the Community Earth System Model (CESM1) was developed and tested.
References
More filters
Journal ArticleDOI

Stomatal conductance and photosynthesis

TL;DR: Under optimal conditions, the most outstanding genotype was ICS-1, both in plant height, number of leaves, and stomatal conductance, this being proof that this genotype develops excellently and stands out if it has the right conditions and water availability.
Book

Mathematical Statistics and Data Analysis

TL;DR: In this article, the authors present a model for estimating parameters and fitting of probability distributions from the normal distribution. But the model is not suitable for the analysis of categorical data.
Journal ArticleDOI

Organic acids in the rhizosphere: a critical review

TL;DR: In this article, a review of the role of organic acids in rhizosphere processes is presented, which includes information on organic acid levels in plants (concentrations, compartmentalisation, spatial aspects, synthesis), plant efflux (passive versus active transport, theoretical versus experimental considerations), soil reactions (soil solution concentrations, sorption) and microbial considerations (mineralization).
Journal ArticleDOI

Biogeochemical aspects of atmospheric methane

TL;DR: In this paper, the authors identify and evaluate several constraints on the budget of atmospheric methane, its sources, sinks and residence time, and construct a list of sources and sinks, identities, and sizes.
Journal ArticleDOI

Methane emissions from terrestrial plants under aerobic conditions

TL;DR: It is demonstrated using stable carbon isotopes that methane is readily formed in situ in terrestrial plants under oxic conditions by a hitherto unrecognized process, suggesting that this newly identified source may have important implications for the global methane budget and may call for a reconsideration of the role of natural methane sources in past climate change.
Related Papers (5)