scispace - formally typeset
Open Access

Enhancing thermal conductivity of fluids with nano-particles

Stephen U. S. Choi
- Vol. 231, pp 99-105
About
The article was published on 1995-01-01 and is currently open access. It has received 7263 citations till now. The article focuses on the topics: Thermal conductivity & Nanoparticle.

read more

Citations
More filters
Journal ArticleDOI

Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes

TL;DR: The turbulent convective heat transfer behavior of alumina (Al 2 O 3 ) and zirconia (ZrO 2 ) nanoparticle dispersions in water is investigated experimentally in a flow loop with a horizontal tube test section at various flow rates (9000
Journal ArticleDOI

Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids

TL;DR: In this paper, the convective heat transfer coefficient and friction factor for fully developed turbulent flow of MWCNT-Fe3O4/water hybrid nanofluids flowing through a uniformly-heated-atconstant-heat-flux circular tube are estimated.
Journal ArticleDOI

Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure

TL;DR: In this paper, the authors present a numerical study of the cooling performance of a heat source embedded on the bottom wall of an enclosure filled with nanofluids, where the top and vertical walls of the enclosure are maintained at a relatively low temperature.
Journal ArticleDOI

Magnetic field effect on natural convection in a nanofluid-filled square enclosure

TL;DR: In this paper, the authors examined the natural convection in an enclosure that is filled with a water-Al2O3 nanofluid and is influenced by a magnetic field, based upon numerical predictions, the effects of pertinent parameters such as the Rayleigh number (103,≤,Ra,≤ 107), the solid volume fraction (0.06), and the Hartmann number ( 0.1), on the flow and temperature fields and the heat transfer performance of the enclosure were examined.
Journal ArticleDOI

Formulation of nanofluids for natural convective heat transfer applications

TL;DR: In this article, aqueous-based nanofluids are formulated in such a way that they are found very stable and are used to investigate their heat transfer behavior under the natural convection conditions.
Related Papers (5)