scispace - formally typeset
Open AccessJournal ArticleDOI

Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant

TLDR
In this article, the final results of the Hubble Space Telescope Key Project to measure the Hubble constant are presented, and the implications of these results for cosmology are discussed and compared with other, global methods for measuring the Hubble constants.
Abstract
We present here the final results of the Hubble Space Telescope Key Project to measure the Hubble constant. We summarize our method, the results and the uncertainties, tabulate our revised distances, and give the implications of these results for cosmology. The analysis presented here benefits from a number of recent improvements and refinements, including (1) a larger LMC Cepheid sample to define the fiducial period-luminosity (PL) relations, (2) a more recent HST Wide Field and Planetary Camera 2 (WFPC2) photometric calibration, (3) a correction for Cepheid metallicity, and (4) a correction for incompleteness bias in the observed Cepheid PL samples. New, revised distances are given for the 18 spiral galaxies for which Cepheids have been discovered as part of the Key Project, as well as for 13 additional galaxies with published Cepheid data. The new calibration results in a Cepheid distance to NGC 4258 in better agreement with the maser distance to this galaxy. Based on these revised Cepheid distances, we find values (in km/sec/Mpc) of H0 = 71 +/- 2 (random) +/- 6 (systematic) (type Ia supernovae), 71 +/- 2 +/- 7 (Tully-Fisher relation), 70 +/- 5 +/- 6 (surface brightness fluctuations), 72 +/- 9 +/- 7 (type II supernovae), and 82 +/- 6 +/- 9 (fundamental plane). We combine these results for the different methods with 3 different weighting schemes, and find good agreement and consistency with H0 = 72 +/- 8. Finally, we compare these results with other, global methods for measuring the Hubble constant.

read more

Citations
More filters
Journal ArticleDOI

Planck 2013 results. XVI. Cosmological parameters

Peter A. R. Ade, +327 more
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Journal ArticleDOI

Planck 2013 results. XVI. Cosmological parameters

Peter A. R. Ade, +262 more
TL;DR: In this paper, the authors present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter LCDM cosmology.
Journal ArticleDOI

Dynamics of dark energy

TL;DR: In this article, the authors review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence and tachyon.
References
More filters
Journal ArticleDOI

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Journal ArticleDOI

The relationship between infrared, optical, and ultraviolet extinction

TL;DR: In this article, the average extinction law over the 3.5 micron to 0.125 wavelength range was derived for both diffuse and dense regions of the interstellar medium. And the validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature.
Book

The Early Universe

TL;DR: In this article, the Robertson-Walker Metric is used to measure the radius of the Planck Epoch in the expanding universe, which is a measure of the number of atoms in the universe.
Related Papers (5)