scispace - formally typeset
Open AccessJournal ArticleDOI

Frequency tunable near-infrared metamaterials based on VO2 phase transition.

Reads0
Chats0
TLDR
In this paper, an Ag split ring resonator (SRR) is patterned with e-beam lithography onto planar VO_2 and etched via reactive ion etching to yield Ag/VO_2 hybrid SRRs.
Abstract
Engineering metamaterials with tunable resonances from mid-infrared to near-infrared wavelengths could have far-reaching consequences for chip based optical devices, active filters, modulators, and sensors. Utilizing the metal-insulator phase transition in vanadium oxide (VO_2), we demonstrate frequency-tunable metamaterials in the near-IR range, from 1.5 - 5 microns. Arrays of Ag split ring resonators (SRRs) are patterned with e-beam lithography onto planar VO_2 and etched via reactive ion etching to yield Ag/VO_2 hybrid SRRs. FTIR reflection data and FDTD simulation results show the resonant peak position red shifts upon heating above the phase transition temperature. We also show that, by including coupling elements in the design of these hybrid Ag/VO_2 bi-layer structures, we can achieve resonant peak position tuning of up to 110 nm.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Alternative Plasmonic Materials: Beyond Gold and Silver

TL;DR: This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskiteOxides, metal nitrides, silicides, germanides, and 2D materials such as graphene.
Journal ArticleDOI

A review of metasurfaces: physics and applications.

TL;DR: Recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible is reviewed, with opinions of opportunities and challenges in this rapidly developing research field.
Journal ArticleDOI

A review of metasurfaces: physics and applications

TL;DR: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature as discussed by the authors.
Journal ArticleDOI

Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions

TL;DR: In this paper, the authors discuss the role of materials synthesis in influencing functional properties and discuss future research directions that may be worth consideration, concluding with a brief discussion on future directions that are worth consideration.
References
More filters
Journal ArticleDOI

Negative Refraction Makes a Perfect Lens

TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Journal ArticleDOI

Experimental Verification of a Negative Index of Refraction

TL;DR: These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root ofɛ·μ for the frequencies where both the permittivity and the permeability are negative.
Journal ArticleDOI

Controlling Electromagnetic Fields

TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Journal ArticleDOI

Metamaterial Electromagnetic Cloak at Microwave Frequencies

TL;DR: This work describes here the first practical realization of a cloak of invisibility, constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies.
Related Papers (5)