scispace - formally typeset
Journal ArticleDOI

Guidelines for Reduced-Order Thermal Modeling of Multifinger GaN HEMTs

TLDR
In this paper, a high-fidelity multiphysics modeling approach employing one-way electrothermal coupling is validated against experimental results from Raman thermometry of a 60-finger gallium nitride (GaN) HEMT power amplifier under a set of direct current (DC)-bias conditions.
Abstract
\n The increasing demand for tightly integrated gallium nitride high electron mobility transistors (HEMT) into electronics systems requires accurate thermal evaluation. While these devices exhibit favorable electrical characteristics, the performance and reliability suffer from elevated operating temperatures. Localized device self-heating, with peak channel and die level heat fluxes of the order of 1 MW cm−2 and 1 kW cm−2, respectively, presents a need for thermal management that is reliant on accurate channel temperature predictions. In this publication, a high-fidelity multiphysics modeling approach employing one-way electrothermal coupling is validated against experimental results from Raman thermometry of a 60-finger gallium nitride (GaN) HEMT power amplifier under a set of direct current (DC)-bias conditions. A survey of commonly assumed reduced-order approximations, in the form of numerical and analytical models, are systematically evaluated with comparisons to the peak channel temperature rise of the coupled multiphysics model. Recommendations of modeling assumptions are made relating to heat generation, material properties, and composite layer discretization for numerical and analytical models. The importance of electrothermal coupling is emphasized given the structural and bias condition effect on the heat generation profile. Discretization of the composite layers, with temperature-dependent thermal properties that are physically representative, are also recommended.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A perspective on the electro-thermal co-design of ultra-wide bandgap lateral devices

TL;DR: In this article, the need and process for the "electro-thermal co-design" of laterally configured ultra-wide bandgap (UWBG) electronic devices and thermal characterization methods, device thermal modeling practices, and both device and package-level thermal management solutions are discussed.
Journal ArticleDOI

Diamond-Incorporated Flip-Chip Integration for Thermal Management of GaN and Ultra-Wide Bandgap RF Power Amplifiers

TL;DR: In this article, a diamond-incorporated flip-chip integration scheme is proposed that takes advantage of existing semiconductor device processing and growth techniques to reduce device-level thermal management.

Development of a Versatile Physics-Based Finite-Element Model of an AlGaN/GaN HEMT Capable of Accommodating Process and Epitaxy Variations and Calibrated Using Multiple DC Parameters (Postprint)

TL;DR: In this article, a physics-based finite element model of operation of an AlGaN/GaN HEMT with device geometry inputs taken from transmission electron microscope cross sections and calibrated by comparison with measured electrical data comprising standard field-effect transistor metrics and less well-known model parameters is presented.
References
More filters
Journal ArticleDOI

Nanoscale thermal transport

TL;DR: A review of the literature on thermal transport in nanoscale devices can be found in this article, where the authors highlight the recent developments in experiment, theory and computation that have occurred in the past ten years and summarizes the present status of the field.
Journal ArticleDOI

Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures

TL;DR: In this paper, a combination of high resolution x-ray diffraction, atomic force microscopy, Hall effect, and capacitance-voltage profiling measurements is used to calculate the polarization induced sheet charge bound at the AlGaN/GaN interfaces.
Journal ArticleDOI

A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs

TL;DR: Examples of broadband amplifiers, as well as several of the main areas of high-efficiency amplifier design-notably Class-D, Class-E, class-F, and Class-J approaches, Doherty PAs, envelope-tracking techniques, and Chireix outphasing are described.
Related Papers (5)