scispace - formally typeset
Journal ArticleDOI

Highly Crystalline Soluble Acene Crystal Arrays for Organic Transistors: Mechanism of Crystal Growth During Dip‐Coating

TLDR
In this article, a facile one-step growth of self-aligning, highly crystalline soluble acene arrays that exhibit excellent field-effect mobilities was reported via an optimized dip-coating process.
Abstract
The preparation of uniform large-area highly crystalline organic semiconductor thin films that show outstanding carrier mobilities remains a challenge in the field of organic electronics, including organic field-effect transistors. Quantitative control over the drying speed during dip-coating permits optimization of the organic semiconductor film formation, although the kinetics of crystallization at the air–solution–substrate contact line are still not well understood. Here, we report the facile one-step growth of self-aligning, highly crystalline soluble acene crystal arrays that exhibit excellent field-effect mobilities (up to 1.5 cm V−1 s−1) via an optimized dip-coating process. We discover that optimized acene crystals grew at a particular substrate lifting-rate in the presence of low boiling point solvents, such as dichloromethane (b.p. of 40.0 °C) or chloroform (b.p. of 60.4 °C). Variable-temperature dip-coating experiments using various solvents and lift rates are performed to elucidate the crystallization behavior. This bottom-up study of soluble acene crystal growth during dip-coating provides conditions under which one may obtain uniform organic semiconductor crystal arrays with high crystallinity and mobilities over large substrate areas, regardless of the substrate geometry (wafer substrates or cylinder-shaped substrates).

read more

Citations
More filters
Journal ArticleDOI

Organic semiconductor crystals

TL;DR: This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications.
Journal ArticleDOI

Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array

TL;DR: In this paper, a thin transparent nanopaper-based high-mobility organic thin-film transistor (OTFT) array is demonstrated for the first time on cellulose nanofiber paper.
Journal ArticleDOI

Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

TL;DR: This work presents a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics, demonstrating that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.
References
More filters
Journal ArticleDOI

Capillary flow as the cause of ring stains from dried liquid drops

TL;DR: In this article, the authors ascribe the characteristic pattern of the deposition to a form of capillary flow in which pinning of the contact line of the drying drop ensures that liquid evaporating from the edge is replenished by liquid from the interior.
Journal ArticleDOI

The larger acenes: versatile organic semiconductors.

TL;DR: New approaches to add functionality were developed to improve the processability of these materials in solution, allowing the synthesis of acenes larger than pentacene, which have hitherto been largely unavailable and poorly studied.
Journal ArticleDOI

Flexible active-matrix displays and shift registers based on solution-processed organic transistors.

TL;DR: Flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-μm-thick polyimide substrates based on 1,888 transistors are demonstrated, which are the largest organic integrated circuits reported to date.
Journal ArticleDOI

Functionalized Pentacene: Improved Electronic Properties from Control of Solid-State Order

TL;DR: The preparation of two functionalized pentacene derivatives, and the effect of this functionalization on both the solid-state ordering and the electronic properties of the resulting crystals is reported.
Journal ArticleDOI

Pentacene organic thin-film transistors-molecular ordering and mobility

TL;DR: Pentacene-based organic thin-film transistors (TFT's) with field effect mobility as large as 0.7 cm/sup 2/V/spl middot/s and on/off current ratio larger than 10/sup 8/ have been fabricated as mentioned in this paper.
Related Papers (5)