scispace - formally typeset
Open AccessProceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

Reads0
Chats0
TLDR
The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Image Super-Resolution Using Deep Convolutional Networks

TL;DR: Zhang et al. as discussed by the authors proposed a deep learning method for single image super-resolution (SR), which directly learns an end-to-end mapping between the low/high-resolution images.
Journal ArticleDOI

The Pascal Visual Object Classes Challenge: A Retrospective

TL;DR: A review of the Pascal Visual Object Classes challenge from 2008-2012 and an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.
Proceedings ArticleDOI

Learning Deep Features for Discriminative Localization

TL;DR: This work revisits the global average pooling layer proposed in [13], and sheds light on how it explicitly enables the convolutional neural network (CNN) to have remarkable localization ability despite being trained on imagelevel labels.
Posted Content

Communication-Efficient Learning of Deep Networks from Decentralized Data

TL;DR: This work presents a practical method for the federated learning of deep networks based on iterative model averaging, and conducts an extensive empirical evaluation, considering five different model architectures and four datasets.
Journal ArticleDOI

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

TL;DR: This work equips the networks with another pooling strategy, "spatial pyramid pooling", to eliminate the above requirement, and develops a new network structure, called SPP-net, which can generate a fixed-length representation regardless of image size/scale.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)