scispace - formally typeset
Open AccessProceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TLDR
The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation

TL;DR: An approach that jointly solves the tasks of detection and pose estimation: it infers the number of persons in a scene, identifies occluded body parts, and disambiguates body parts between people in close proximity of each other is proposed.
Book ChapterDOI

DeeperCut: A Deeper, Stronger, and Faster Multi-person Pose Estimation Model

TL;DR: In this article, the authors proposed an improved body part detector that generates effective bottom-up proposals for body parts, image-conditioned pairwise terms that allow to assemble the proposals into a variable number of consistent body part configurations, and an incremental optimization strategy that explores the search space more efficiently thus leading both to better performance and significant speedup factors.
Proceedings ArticleDOI

Learning to Detect Salient Objects with Image-Level Supervision

TL;DR: This paper develops a weakly supervised learning method for saliency detection using image-level tags only, which outperforms unsupervised ones with a large margin, and achieves comparable or even superior performance than fully supervised counterparts.
Proceedings ArticleDOI

Future Frame Prediction for Anomaly Detection - A New Baseline

TL;DR: In this article, Liu et al. propose to detect abnormal events by enforcing the optical flow between predicted frames and ground truth frames to be consistent, and this is the first work that introduces a temporal constraint into the video prediction task.
Proceedings ArticleDOI

BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation

TL;DR: This paper proposes a method that achieves competitive accuracy but only requires easily obtained bounding box annotations, and yields state-of-the-art results on PASCAL VOC 2012 and PASCal-CONTEXT.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)