scispace - formally typeset
Open AccessProceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TLDR
The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

Learning Face Representation from Scratch

TL;DR: A semi-automatical way to collect face images from Internet is proposed and a large scale dataset containing about 10,000 subjects and 500,000 images, called CASIAWebFace is built, based on which a 11-layer CNN is used to learn discriminative representation and obtain state-of-theart accuracy on LFW and YTF.
Journal ArticleDOI

Performance-optimized hierarchical models predict neural responses in higher visual cortex

TL;DR: This work uses computational techniques to identify a high-performing neural network model that matches human performance on challenging object categorization tasks and shows that performance optimization—applied in a biologically appropriate model class—can be used to build quantitative predictive models of neural processing.
Posted Content

ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

TL;DR: A novel deep neural network architecture named ENet (efficient neural network), created specifically for tasks requiring low latency operation, which is up to 18 times faster, requires 75% less FLOPs, has 79% less parameters, and provides similar or better accuracy to existing models.
Proceedings ArticleDOI

Self-Training With Noisy Student Improves ImageNet Classification

TL;DR: A simple self-training method that achieves 88.4% top-1 accuracy on ImageNet, which is 2.0% better than the state-of-the-art model that requires 3.5B weakly labeled Instagram images.
Posted Content

Understanding Neural Networks Through Deep Visualization

TL;DR: This work introduces several new regularization methods that combine to produce qualitatively clearer, more interpretable visualizations of convolutional neural networks.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)