scispace - formally typeset
Open AccessJournal ArticleDOI

Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms.

TLDR
In this article, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET), and the equivalent emergence of primary myelofibrosis (PMF).
Abstract
Myeloid neoplasms, including acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), and myelodysplastic syndromes (MDS), feature clonal dominance and remodeling of the bone marrow niche in a manner that promotes malignant over non-malignant hematopoiesis. This take-over of hematopoiesis by the malignant clone is hypothesized to include hyperactivation of inflammatory signaling and overproduction of inflammatory cytokines. In the Ph-negative MPNs, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET) to secondary myelofibrosis (MF), and the equivalent emergence of primary myelofibrosis (PMF). Bone marrow fibrosis itself is thought to be mediated heavily by the cytokine TGF-β, and possibly other cytokines produced as a result of hyperactivated JAK2 kinase in the malignant clone. MF also features extramedullary hematopoiesis and progression to bone marrow failure, both of which may be mediated in part by responses to cytokines. In MF, elevated levels of individual cytokines in plasma are adverse prognostic indicators: elevated IL-8/CXCL8, in particular, predicts risk of transformation of MF to secondary AML (sAML). Tumor necrosis factor (TNF, also known as TNFα), may underlie malignant clonal dominance, based on results from mouse models. Human PV and ET, as well as MF, harbor overproduction of multiple cytokines, above what is observed in normal aging, which can lead to cellular signaling abnormalities separate from those directly mediated by hyperactivated JAK2 or MPL kinases. Evidence that NFκB pathway signaling is frequently hyperactivated in a pan-hematopoietic pattern in MPNs, including in cells outside the malignant clone, emphasizes that MPNs are pan-hematopoietic diseases, which remodel the bone marrow milieu to favor persistence of the malignancy. Clinical evidence that JAK2 inhibition by ruxolitinib in MF neither reliably reduces malignant clonal burden nor eliminates cytokine elevations, suggests targeting cytokine mediated signaling as a therapeutic strategy, which is being pursued in new clinical trials. Greater knowledge of inflammatory pathophysiology in MPNs can therefore contribute to the development of more effective therapy.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Non-relapse cytopenias following allogeneic stem cell transplantation, a case based review

TL;DR: A case-based review of non-relapse cytopenias in allogeneic stem cell transplant (alloSCT) patients is presented in this article , with the aim of providing guidance to clinicians managing these complex patients.
Journal ArticleDOI

Essential thrombocythaemia progression to the fibrotic phase is associated with a decrease in JAK2 and PDL1 levels

TL;DR: In this article , the authors evaluated the PDL1 mRNA and JAK2 mRNA level in molecularly defined essential thrombocythaemia (ET) patients (pts) during disease progression to post-ET myelofibrosis (post-ET-MF).
Journal ArticleDOI

Inflammatory response mediates cross-talk with immune function and reveals clinical features in acute myeloid leukemia

TL;DR: In this paper , the expression variation landscape of inflammatory response-related genes (IRRGs) and calculated an inflammatory response score for each sample using the gene set variation analysis (GSVA) algorithm.
Journal ArticleDOI

How to Treat Algodystrophy and Rheumatic Comorbidity in Myelofibrosis: Three Case Reports

TL;DR: As overlapping interactions and clinical manifestations between hematologic neoplasms and rheumatologic diseases exist, new clinical manifestations, such as algodystrophy, may emerge during myelofibrosis and need to be monitored in the long term by a multidisciplinary team.
References
More filters
Journal ArticleDOI

Cancer-related inflammation.

TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Related Papers (5)