scispace - formally typeset
Journal ArticleDOI

Issues and challenges facing rechargeable lithium batteries

TLDR
A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract
Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

read more

Citations
More filters
Journal ArticleDOI

Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices

TL;DR: Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices Dengjie Chen, ⊥,∇ Chi Chen,†,⊥ Zarah Medina Baiyee,‡,§ and Francesco Ciucci*,†.
Journal ArticleDOI

Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates

TL;DR: A thin, lightweight, and flexible full lithium ion battery with a high-rate performance and energy density that can be repeatedly bent to a radius of 5 mm without structural failure and performance loss is demonstrated.
Journal ArticleDOI

Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes.

TL;DR: Synchrotron hard X-ray microtomography experiments on symmetric lithium-polymer-lithium cells cycled at 90 °C show that during the early stage of dendrite development, the bulk of the dendritic structure lies within the electrode, underneath the polymer/electrode interface.
Journal ArticleDOI

Electrochemistry and the Future of the Automobile

TL;DR: In this paper, the authors discuss new generations of Li ion positive and negative electrode intercalation compounds that are needed and under development to achieve energy storage density, durability, and cost targets.
References
More filters
Journal ArticleDOI

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries

TL;DR: It is reported that electrodes made of nanoparticles of transition-metal oxides (MO), where M is Co, Ni, Cu or Fe, demonstrate electrochemical capacities of 700 mA h g-1, with 100% capacity retention for up to 100 cycles and high recharging rates.
Journal ArticleDOI

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density

TL;DR: In this paper, a new system LixCoO2 (0 Li x CoO 2 Li ) is proposed, which shows low overvoltages and good reversibility for current densities up to 4 mA cm−2 over a large range of x.
Journal ArticleDOI

Nanocomposite polymer electrolytes for lithium batteries

TL;DR: In this article, the authors showed that nanometre-sized ceramic powders can be used as solid plasticizers for polyethylene oxide (PEO) electrolytes to prevent crystallization on annealing from amorphous state above 60°C.
Journal ArticleDOI

Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material

TL;DR: A tin-based amorphous composite oxide (TCO) was synthesized in this paper to replace the carbon-based lithium intercalation materials currently in extensive use as the negative electrode (anode) of lithium-ion rechargeable batteries.
Related Papers (5)
Trending Questions (1)
Issues and challenges facing rechargeable lithium batteries

The paper discusses the challenges in the synthesis, characterization, electrochemical performance, and safety of rechargeable lithium batteries.