scispace - formally typeset
Open AccessJournal ArticleDOI

Kepler-432: a red giant interacting with one of its two long-period giant planets

TLDR
In this paper, the authors reported the discovery of Kepler-432b, a giant planet (M_b = 5.41^(+0.12)_(-0.036)_−0.039)R_Jup) transiting an evolved star with an eccentricity of e=0.
Abstract
We report the discovery of Kepler-432b, a giant planet (M_b = 5.41^(+0.32)_(-0.18)M_Jup, R_b = 1.145^(+0.036)_(-0.039)R_Jup) transiting an evolved star (M_* = 1.32^(+0.10)_(-0.07)M_⊙, R_* = 4.06^(+0.12)_(-0.08)R_⊙) with an orbital period of P_b = 52.501129^(+0.000067)_(-0.000053) days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e=0.5134^(+0.0098)_(-0.0089), which we also measure independently with asterodensity profiling (AP; e=0.507^(+0.039)_(-0.114)), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; M_c sin i_c = 2.43^(+0.22)_(-0.24) M_Jup, P_c = 406.2^(+3.9)_(-2.5) days), and adaptive optics imaging revealed a nearby (0".87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise ratio asteroseismic oscillations, which enable precise measurements of the stellar mass, radius, and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5 day orbit may have been shaped by star–planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.

read more

Content maybe subject to copyright    Report

Figures
Citations
More filters
Journal ArticleDOI

Spin-Orbit Alignment For 110-Day-Period KOI368.01 From Gravity Darkening

TL;DR: In this article, the authors fit the Kepler photometric light curve of the KOI-368 system using an oblate, gravity-darkened stellar model in order to constrain its spin-orbit alignment.
Journal ArticleDOI

Automated approach to measure stellar inclinations: validation through large-scale measurements on the red giant branch

TL;DR: In this article, the authors used the mean height-to-background ratio of dipole mixed modes with different azimuthal orders to measure stellar inclinations and recovered the underlying statistical distribution of inclinations in an unbiased way using a probability density function for the stellar inclination angle.
Journal ArticleDOI

The k2-esprint project v: a short-period giant planet orbiting a subgiant star

TL;DR: In this paper, the authors report the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b) with an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date.
References
More filters
Journal ArticleDOI

Equation of state calculations by fast computing machines

TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Journal ArticleDOI

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Journal ArticleDOI

Monte Carlo Sampling Methods Using Markov Chains and Their Applications

TL;DR: A generalization of the sampling method introduced by Metropolis et al. as mentioned in this paper is presented along with an exposition of the relevant theory, techniques of application and methods and difficulties of assessing the error in Monte Carlo estimates.
Journal ArticleDOI

Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds

TL;DR: In this paper, the authors presented a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed.
Related Papers (5)

Kepler Planet-Detection Mission: Introduction and First Results

William J. Borucki, +70 more
- 19 Feb 2010 - 
Frequently Asked Questions (8)
Q1. What are the contributions in "Kepler-432: a red giant interacting with one of its two long-period giant planets" ?

The authors report the discovery of Kepler-432b, a giant planet ( = + M M 5. 41 b 0. 18 0. 32 Jup, = + R R 1. 145 b 0. 039 0. 036 Jup ) transiting an evolved star (   = = + +   M M R R 1. 32, 4. 06 0. 07 0. 10 0. 08 0. 12 ) with an orbital period of = + P 52. 501129 b 0. 000053 0. 000067 days. 5 day orbit may have been shaped by star–planet interaction in a manner similar to hot Jupiter systems, and the authors present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well aligned with the orbit of the transiting planet. 

Because of its unprecedented photometric sensitivity,duty cycle, and time coverage, companions that are intrinsically rare or otherwise difficult to detect are expected to be found by Kepler, and detailed study of such discoveries can lead to characterization of poorly understood classes of objects and physical processes. 

Twelve parameters were included in the fit: for each planet, the times of inferior conjunction T0, orbital periods P, radial-velocity semi-amplitudes K, and the orthogonal quantities the authors sin and the authors cos , where e is orbital eccentricity and ω is the longitude of periastron; the systemic velocity, grel, in the arbitrary zero point of the TRES relative RV data set; and the FIES RV offset, DRVFIES. 

The nightly observations of RV standards were used to correct for systematic velocity shifts between runs and to estimate the instrumental precision. 

Rauch & Holman (1999) demonstrated that ∼20 time steps per innermost orbit is sufficient to ensure numerical stability in symplectic integrations. 

The stellar model best fit to the derived stellar properties provides color indices that may be compared against measured values as a consistency check and as a means to determine a photometric distance to the system. 

The authors do caution that their v isin measurement for this slowly rotating giant could be biased, for example, due to the unknown macroturbulent velocity of Kepler-432. 

This means that the heights of the m = ±1 components relative to the m = 0 component will change in opposite directions, so the effect can be mitigated by forcing the m = ±1 components to have the same height in the fit, as well as by performing a global fit to all modes, as the authors have done.