scispace - formally typeset
Open AccessJournal ArticleDOI

Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis

TLDR
Three new methods for sampling and evidence evaluation from distributions that may contain multiple modes and significant degeneracies in very high dimensions are presented, leading to a further substantial improvement in sampling efficiency and robustness and an even more efficient technique for estimating the uncertainty on the evaluated evidence.
Abstract
In performing a Bayesian analysis of astronomical data, two difficult problems often emerge. First, in estimating the parameters of some model for the data, the resulting posterior distribution may be multimodal or exhibit pronounced (curving) degeneracies, which can cause problems for traditional MCMC sampling methods. Second, in selecting between a set of competing models, calculation of the Bayesian evidence for each model is computationally expensive. The nested sampling method introduced by Skilling (2004), has greatly reduced the computational expense of calculating evidences and also produces posterior inferences as a by-product. This method has been applied successfully in cosmological applications by Mukherjee et al. (2006), but their implementation was efficient only for unimodal distributions without pronounced degeneracies. Shaw et al. (2007), recently introduced a clustered nested sampling method which is significantly more efficient in sampling from multimodal posteriors and also determines the expectation and variance of the final evidence from a single run of the algorithm, hence providing a further increase in efficiency. In this paper, we build on the work of Shaw et al. and present three new methods for sampling and evidence evaluation from distributions that may contain multiple modes and significant degeneracies; we also present an even more efficient technique for estimating the uncertainty on the evaluated evidence. These methods lead to a further substantial improvement in sampling efficiency and robustness, and are applied to toy problems to demonstrate the accuracy and economy of the evidence calculation and parameter estimation. Finally, we discuss the use of these methods in performing Bayesian object detection in astronomical datasets.

read more

Citations
More filters
Journal ArticleDOI

Planck 2015 results. XX. Constraints on inflation

TL;DR: In this article, the authors report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements, which are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles.
Journal ArticleDOI

MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics

TL;DR: The developments presented here lead to further improvements in sampling efficiency and robustness, as compared to the original algorit hm presented in Feroz & Hobson (2008), which itself significantly outperformed existi ng MCMC techniques in a wide range of astrophysical inference problems.
Journal ArticleDOI

Planck 2013 results. XXII. Constraints on inflation

Peter A. R. Ade, +324 more
TL;DR: In this article, the authors present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey.
Journal ArticleDOI

Cosmology and Fundamental Physics with the Euclid Satellite

Luca Amendola, +81 more
TL;DR: Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program as discussed by the authors, which will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shift of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky.
Journal ArticleDOI

Bayes in the sky: Bayesian inference and model selection in cosmology

TL;DR: This review is an introduction to Bayesian methods in cosmology and astrophysics and recent results in the field, and presents Bayesian probability theory and its conceptual underpinnings, Bayes' Theorem and the role of priors.
References
More filters
Book

Information Theory, Inference and Learning Algorithms

TL;DR: A fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.
Book

Information theory, inference, and learning algorithms

Djc MacKay
TL;DR: In this paper, the mathematics underpinning the most dynamic areas of modern science and engineering are discussed and discussed in a fun and exciting textbook on the mathematics underlying the most important areas of science and technology.
Book

Data analysis : a Bayesian tutorial

TL;DR: This tutorial jumps right in to the power ofparameter estimation without dragging you through the basic concepts of parameter estimation.
Journal ArticleDOI

Information criteria for astrophysical model selection

TL;DR: The Deviance Information Criterion as mentioned in this paper combines ideas from both heritages; it is readily computed from Monte Carlo posterior samples and, unlike the AIC and BIC, allows for parameter degeneracy.
Related Papers (5)

Planck 2015 results. XIII. Cosmological parameters

Peter A. R. Ade, +260 more