scispace - formally typeset
Journal ArticleDOI

Multiplexed electrical detection of cancer markers with nanowire sensor arrays.

Reads0
Chats0
TLDR
Highly sensitive, label-free, multiplexed electrical detection of cancer markers using silicon-nanowire field-effect devices in which distinct nanowires and surface receptors are incorporated into arrays opens up substantial possibilities for diagnosis and treatment of cancer and other complex diseases.
Abstract
We describe highly sensitive, label-free, multiplexed electrical detection of cancer markers using silicon-nanowire field-effect devices in which distinct nanowires and surface receptors are incorporated into arrays. Protein markers were routinely detected at femtomolar concentrations with high selectivity, and simultaneous incorporation of control nanowires enabled discrimination against false positives. Nanowire arrays allowed highly selective and sensitive multiplexed detection of prostate specific antigen (PSA), PSA-a1-antichymotrypsin, carcinoembryonic antigen and mucin-1, including detection to at least 0.9 pg/ml in undiluted serum samples. In addition, nucleic acid receptors enabled real-time assays of the binding, activity and small-molecule inhibition of telomerase using unamplified extracts from as few as ten tumor cells. The capability for multiplexed real-time monitoring of protein markers and telomerase activity with high sensitivity and selectivity in clinically relevant samples opens up substantial possibilities for diagnosis and treatment of cancer and other complex diseases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Aptamers as molecular recognition elements for electrical nanobiosensors.

TL;DR: This review summarizes the nanoscale biosensors that use aptamers as molecular recognition elements and the advantages of aptamer over antibodies as sensors are highlighted.
Journal ArticleDOI

Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs

TL;DR: This work reviews the recent literature produced in the field of NW FET biosensors and elaborate on the parameters that ultimately influence device performance such as methods of NW production, device dimensionality, and active measurement conditions.
Journal ArticleDOI

Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum.

TL;DR: These microfluidic immunosensors employing nanostructured surfaces and off-line analyte capture with heavily labeled paramagnetic particles hold great promise for accurate, sensitive multiplexed detection of diagnostic cancer biomarkers.
Journal ArticleDOI

Scanning Probe Study on the Piezotronic Effect in ZnO Nanomaterials and Nanodevices

TL;DR: The research progress on piezotronic properties of ZnO nanomaterials investigated by scanning probe microscopy (SPM) and ZNO-based prototype pieZotronic nanodevices built in virtue of SPM are introduced.
Journal ArticleDOI

Carbon nanomaterials field-effect-transistor-based biosensors

TL;DR: Liu et al. as discussed by the authors reviewed recent progress in the rapidly developing area of biomolecular interaction detection using FET-based biosensors based on the carbon nanomaterials single-walled carbon nanotubes (SWNTs) and graphene.
References
More filters
Journal ArticleDOI

Specific association of human telomerase activity with immortal cells and cancer

TL;DR: A highly sensitive assay for measuring telomerase activity was developed in this paper, which showed that telomerases appear to be stringently repressed in normal human somatic tissues but reactivated in cancer, where immortal cells are likely required to maintain tumor growth.
Journal ArticleDOI

Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species

TL;DR: The small size and capability of these semiconductor nanowires for sensitive, label-free, real-time detection of a wide range of chemical and biological species could be exploited in array-based screening and in vivo diagnostics.
Journal ArticleDOI

In vivo cancer targeting and imaging with semiconductor quantum dots

TL;DR: Sensitive and multicolor fluorescence imaging of cancer cells under in vivo conditions are achieved and a whole-body macro-illumination system with wavelength-resolved spectral imaging is integrated for efficient background removal and precise delineation of weak spectral signatures.
Journal ArticleDOI

Cancer nanotechnology: opportunities and challenges.

TL;DR: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry that can provide essential breakthroughs in the fight against cancer.
Journal ArticleDOI

The use of nanocrystals in biological detection

TL;DR: The emerging ability to control the patterns of matter on the nanometer length scale can be expected to lead to entirely new types of biological sensors capable of sensing at the single-molecule level in living cells, and capable of parallel integration for detection of multiple signals.
Related Papers (5)