scispace - formally typeset
Open AccessJournal ArticleDOI

On Human Disease-Causing Amino Acid Variants: Statistical Study of Sequence and Structural Patterns

Marharyta Petukh, +2 more
- 06 Apr 2015 - 
- Vol. 36, Iss: 5, pp 524-534
TLDR
Analysis of thermodynamics data reported in the literature indicated that disease‐causing variants tend to destabilize proteins and their interactions, which prompted us to investigate the effects of amino acid mutations on large databases of experimentally measured energy changes in unrelated proteins.
Abstract
Statistical analysis was carried out on large set of naturally occurring human amino acid variations, and it was demonstrated that there is a preference for some amino acid substitutions to be associated with diseases. At an amino acid sequence level, it was shown that the disease-causing variants frequently involve drastic changes in amino acid physicochemical properties of proteins such as charge, hydrophobicity, and geometry. Structural analysis of variants involved in diseases and being frequently observed in human population showed similar trends: disease-causing variants tend to cause more changes in hydrogen bond network and salt bridges as compared with harmless amino acid mutations. Analysis of thermodynamics data reported in the literature, both experimental and computational, indicated that disease-causing variants tend to destabilize proteins and their interactions, which prompted us to investigate the effects of amino acid mutations on large databases of experimentally measured energy changes in unrelated proteins. Although the experimental datasets were linked neither to diseases nor exclusory to human proteins, the observed trends were the same: amino acid mutations tend to destabilize proteins and their interactions. Having in mind that structural and thermodynamics properties are interrelated, it is pointed out that any large change in any of them is anticipated to cause a disease.

read more

Citations
More filters
Journal ArticleDOI

SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation.

TL;DR: This version now contains manually curated binding data for 7085 mutations, an increase of 133%, including changes in kinetics for 1844 mutations, enthalpy and entropy changes for 443 mutations, and 440 mutations, which abolish detectable binding.
Journal ArticleDOI

The Contribution of Missense Mutations in Core and Rim Residues of Protein–Protein Interfaces to Human Disease

TL;DR: This study demonstrated the different distribution and properties of disease-causing SAVs and polymorphisms within different structural regions and in relation to the energetic contribution of amino acid in protein–protein interfaces, thus highlighting the importance of a structural system biology approach for predicting the effect of S AVs.
Journal ArticleDOI

Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers.

TL;DR: Among the many thematic overviews of precision oncology, this review innovates by further comprehensively including precision pharmacology, and within this framework, articulating its protein structural landscape and consequences to cellular signaling pathways.
Journal ArticleDOI

mutation3D: cancer gene prediction through atomic clustering of coding variants in the structural proteome

TL;DR: It is shown that clustering with mutation3D is able to separate functional from nonfunctional mutations by analyzing a combination of 8,869 known inherited disease mutations and 2,004 SNPs overlaid together upon the same sets of crystal structures and homology models.
References
More filters
Journal ArticleDOI

Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features

TL;DR: A set of simple and physically motivated criteria for secondary structure, programmed as a pattern‐recognition process of hydrogen‐bonded and geometrical features extracted from x‐ray coordinates is developed.
Journal ArticleDOI

MutationTaster evaluates disease-causing potential of sequence alterations

TL;DR: MutationTaster allows the efficient filtering of NGS data for alterations with high disease-causing potential and provides Perl scripts that can process data from all major platforms (Roche 454, Illumina Genome Analyzer and ABI SOLiD).
Journal ArticleDOI

The FoldX web server: an online force field

TL;DR: The core functionality of FoldX, namely the calculation of the free energy of a macromolecule based on its high-resolution 3D structure, is now publicly available through a web server at FoldX.
Journal ArticleDOI

K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions

TL;DR: The development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C) and structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner are provided.
Journal ArticleDOI

I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure.

TL;DR: I-Mutant2.0 is introduced as a unique and valuable helper for protein design, even when the protein structure is not yet known with atomic resolution.
Related Papers (5)