scispace - formally typeset
Open AccessJournal ArticleDOI

Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence.

TLDR
A distinct heterochromatic structure that accumulates in senescent human fibroblasts is described, which is designated senescence-associated heterochROMatic foci (SAHF) and is associated with the stable repression of E2F target genes.
About
This article is published in Cell.The article was published on 2003-06-13 and is currently open access. It has received 2055 citations till now. The article focuses on the topics: Senescence-associated heterochromatin focus & E2F.

read more

Citations
More filters
Journal ArticleDOI

Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization

TL;DR: The results underline the importance of the replication-independent chromatin assembly pathway for histone replacement in non-dividing senescent cells and establish PML-NBs as important regulatory sites for the incorporation of new H3.3 into chromatin.
Journal ArticleDOI

Closing the (nuclear) envelope on the genome: how nuclear lamins interact with promoters and modulate gene expression.

TL;DR: This essay addresses key issues raised by recent data on the association of nuclear lamins with the genome, including how lamins interact with large chromatin domains and with spatially restricted regions on gene promoters and the relationship between these interactions, chromatin modifications and gene expression outcomes.
Journal ArticleDOI

MOZ-mediated repression of p16(INK) (4) (a) is critical for the self-renewal of neural and hematopoietic stem cells.

TL;DR: It is shown that the histone acetyltransferase (HAT) monocytic leukemia zinc finger protein (MOZ) controls the proliferation of both hematopoietic and neural stem cells by modulating the transcriptional repression of p16INK4a.
Journal ArticleDOI

The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain

TL;DR: Light is shed on the fact that a novel bromodomain gene, BRD7, is of importance in transcriptional regulation and cellular events including cell cycle, and no obvious changes were observed in the acetylated level of histone H3 after transfection with BRD6, indicating that chromatin remodeling, not chromatin modification, is the major mechanism of BRD 7 mediated gene transcription.
Journal ArticleDOI

Autophagy-mediated degradation of nuclear envelope proteins during oncogene-induced senescence

TL;DR: This study discovered that cells entering BRAF(V600E)- or H-RAS(G12V)-induced senescence downregulate not only lamin B1 but also lamin A, as well as several other nuclear envelope (NE) proteins, resulting in an altered NE morphology.
References
More filters
Journal ArticleDOI

A biomarker that identifies senescent human cells in culture and in aging skin in vivo

TL;DR: It is shown that several human cells express a beta-galactosidase, histochemically detectable at pH 6, upon senescence in culture, which provides in situ evidence that senescent cells may exist and accumulate with age in vivo.
Journal ArticleDOI

The limited in vitro lifetime of human diploid cell strains

TL;DR: The survival curves obtained with human diploid cell strains are comparable to “multiple-hit” or “ multiple-target” curves obtain with other biological systems where an initial threshold dose is required before an exponential form of the curve is established.
Journal ArticleDOI

Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a

TL;DR: It is shown that expression of oncogenic ras in primary human or rodent cells results in a permanent G1 arrest, and that the onset of cellular senescence does not simply reflect the accumulation of cell divisions, but can be prematurely activated in response to an onCogenic stimulus.
Journal ArticleDOI

Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.

TL;DR: It is shown that mammalian methyltransferases that selectively methylate histone H3 on lysine 9 (Suv39h HMTases) generate a binding site for HP1 proteins—a family of heterochromatic adaptor molecules implicated in both gene silencing and supra-nucleosomal chromatin structure.
Journal ArticleDOI

Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.

TL;DR: A stepwise model for the formation of a transcriptionally silent heterochromatin is provided: SUV39H1 places a ‘methyl marker’ on histone H3, which is then recognized by HP1 through its chromo domain, which may also explain the stable inheritance of theheterochromatic state.
Related Papers (5)