scispace - formally typeset
Journal ArticleDOI

Recognition and Response in the Plant Immune System

TLDR
Transduction of recognition probably requires regulated protein degradation and results in massive changes in cellular homeostasis, including a programmed cell death known as the hypersensitive response that indicates a successful, if perhaps over-zealous, disease resistance response.
Abstract
Molecular communication between plants and potential pathogens determines the ultimate outcome of their interaction. The directed delivery of microbial molecules into and around the host cell, and the subsequent perception of these by the invaded plant tissue (or lack thereof), determines the difference between disease and disease resistance. In theory, any foreign molecule produced by an invading pathogen could act as an elicitor of the broad physiological and transcriptional re-programming indicative of a plant defense response. The diversity of elicitors recognized by plants seems to support this hypothesis. Additionally, these elicitors are often virulence factors from the pathogen recognized by the host. This recognition, though genetically as simple as a ligand-receptor interaction, may require additional host proteins that are the nominal targets of virulence factor action. Transduction of recognition probably requires regulated protein degradation and results in massive changes in cellular homeostasis, including a programmed cell death known as the hypersensitive response that indicates a successful, if perhaps over-zealous, disease resistance response.

read more

Citations
More filters
Journal ArticleDOI

Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens

TL;DR: This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens.
Journal ArticleDOI

A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors

TL;DR: Current evidence indicates that MAMPs, DAMPs, and effectors are all perceived as danger signals and induce a stereotypic defense response, and the importance of MAMP/PRR signaling for plant immunity is highlighted.
Journal ArticleDOI

Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation.

TL;DR: It is shown that flagellin and EF-Tu activate a common set of signaling events and defense responses but without clear synergistic effects, and that plant defense responses induced by PAMPs such as EF- Tu reduce transformation by Agrobacterium.
Journal ArticleDOI

Elicitor signal transduction leading to production of plant secondary metabolites.

TL;DR: Progress made on several aspects of elicitor signal transduction leading to production of plant secondary metabolites are summarized, including the integration of multiple signaling pathways into or by transcription factors, as well as the linkage of the above signal components in eliciting network through protein phosphorylation and dephosphorylation.
References
More filters
Journal ArticleDOI

Plant pathogens and integrated defence responses to infection.

TL;DR: The current knowledge of recognition-dependent disease resistance in plants is reviewed, and a few crucial concepts are included to compare and contrast plant innate immunity with that more commonly associated with animals.
Journal ArticleDOI

H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response

TL;DR: It is reported here that H2O2 from this oxidative burst not only drives the cross-linking of cell wall structural proteins, but also functions as a local trigger of programmed death in challenged cells and as a diffusible signal for the induction in adjacent cells of genes encoding cellular protectants.
Journal ArticleDOI

Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

TL;DR: The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms and reveals the evolutionary generation of diversity in the regulation of transcription.
Journal ArticleDOI

MAP kinase signalling cascade in Arabidopsis innate immunity

TL;DR: An Arabidopsis thaliana leaf cell system based on the induction of early-defence gene transcription by flagellin, a highly conserved component of bacterial flagella that functions as a PAMP in plants and mammals is developed, suggesting that signalling events initiated by diverse pathogens converge into a conserved MAPK cascade.
Related Papers (5)