scispace - formally typeset
Open AccessJournal ArticleDOI

Regulatory T Cell Lineage Specification by the Forkhead Transcription Factor Foxp3

Reads0
Chats0
TLDR
Analysis of Foxp3 expression during thymic development suggests that this mechanism is not hard-wired but is dependent on TCR/MHC ligand interactions, and it is shown that expression ofFoxp3 is highly restricted to the subset alphabeta of T cells and, irrespective of CD25 expression, correlates with suppressor activity.
About
This article is published in Immunity.The article was published on 2005-03-01 and is currently open access. It has received 2248 citations till now. The article focuses on the topics: Regulatory T cell & FOXP3.

read more

Citations
More filters
Journal ArticleDOI

TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-Producing T cells

TL;DR: The data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation ofIL-17-producing T cells.
Journal ArticleDOI

Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation

TL;DR: The results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.
Journal ArticleDOI

How regulatory T cells work.

TL;DR: The hypothesis that effector T cells may not be 'innocent' parties in this suppressive process and might in fact potentiate TReg-cell function is proposed.
Journal ArticleDOI

Regulatory T Cells: Mechanisms of Differentiation and Function

TL;DR: Cellular and molecular mechanisms in the differentiation and function of regulatory T cells and their role in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation are discussed.
References
More filters
Journal ArticleDOI

Control of Regulatory T Cell Development by the Transcription Factor Foxp3

TL;DR: Foxp3, which encodes a transcription factor that is genetically defective in an autoimmune and inflammatory syndrome in humans and mice, is specifically expressed in naturally arising CD4+ regulatory T cells and retroviral gene transfer of Foxp3 converts naïve T cells toward a regulatory T cell phenotype similar to that of naturally occurring CD4+.
Journal ArticleDOI

Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells

TL;DR: It is reported that the forkhead transcription factor Foxp3 is specifically expressed in CD4+CD25+ regulatory T cells and is required for their development and function and ectopic expression ofFoxp3 confers suppressor function on peripheral CD4-CD25− T cells.
Journal ArticleDOI

Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.

TL;DR: The authors showed that CD4+CD25+ cells contribute to maintaining self-tolerance by downregulating immune response to self and non-self Ags in an Ag-nonspecific manner, presumably at the T cell activation stage.
Journal ArticleDOI

An essential role for Scurfin in CD4+CD25+ T regulatory cells.

TL;DR: It is shown that Foxp3 is highly expressed by TR cells and is associated with TR cell activity and phenotype, indicating that the Scurfin and CTLA-4 pathways may intersect and providing further insight into the TR cell lineage.
Related Papers (5)