scispace - formally typeset
Open AccessJournal ArticleDOI

Role of AMP-activated protein kinase in mechanism of metformin action

TLDR
It is reported that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed.
Abstract
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin's beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin's inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5

TL;DR: Induction of GCN5 and SIRT1 potentially represents a critical mechanism of action of metformin and is identified as a potential therapeutic strategy for treatment of type 2 diabetes mellitus.
Journal ArticleDOI

Metformin Targets Central Carbon Metabolism and Reveals Mitochondrial Requirements in Human Cancers.

TL;DR: An integrative metabolomics analysis of metformin action in ovarian cancer demonstrates with stable isotope tracing that a metabolic signature obtained from a patient with an exceptional clinical outcome mirrored that of a responsive animal tumor.
Journal ArticleDOI

Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin

TL;DR: It is suggested that OCT3 plays a role in the therapeutic action of metformin and that genetic variants of OCT3 may modulate met formin and catecholamine action.
Journal ArticleDOI

5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation.

TL;DR: AICAR, metformin, and oligomycin were found to inhibit the glucose-induced translocation of glucokinase from the nucleus to the cytosol by a mechanism that could be related to the decrease in intracellular ATP concentrations observed in these conditions.
Journal ArticleDOI

Nutrient–secretion coupling in the pancreatic islet β-cell: recent advances

TL;DR: Recent data indicate that glucose also enhances insulin secretion through mechanisms which do not involve a change in KATP channel activity, and seem likely to underlie the second, sustained phase of glucose-stimulated insulin secretion.
References
More filters
Journal ArticleDOI

Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain

TL;DR: It is concluded that the drug's pharmacological effects are mediated, at least in part, through a time-dependent, self-limiting inhibition of the respiratory chain that restrains hepatic gluconeogenesis while increasing glucose utilization in peripheral tissues.
Journal ArticleDOI

The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis.

TL;DR: Key developments of the last 20 years that have led to the current understanding of the physiology of the CPT system, the structure of theCPT isoforms, the chromosomal localization of their respective genes, and the identification of mutations in the human population are reviewed.
Journal ArticleDOI

The AMP‐Activated Protein Kinase

TL;DR: The central hypothesis is that the AMP-activated protein kinase cascade appears to be an ancient system which evolved to protect cells against the effects of nutritional or environmental stress, and protects the cell by switching off ATP-consuming pathways and switching on alternative pathways for ATP generation.
Journal ArticleDOI

Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I.

TL;DR: The results suggest the existence of a new cell-signaling pathway targeted to the respiratory chain complex I with a persistent effect after cessation of the signaling process.
Journal ArticleDOI

Metabolic effects of metformin in non-insulin-dependent diabetes mellitus.

TL;DR: Metformin acts primarily by decreasing hepatic glucose output, largely by inhibiting gluconeogenesis, and also seems to induce weight loss, preferentially involving adipose tissue.
Related Papers (5)