scispace - formally typeset
Journal ArticleDOI

Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells.

TLDR
A cell labeling approach using short HIV-Tat peptides to derivatize superparamagnetic nanoparticles is developed, which efficiently internalized into hematopoietic and neural progenitor cells in quantities up to 10–30 pg of super paramagnetic iron per cell.
Abstract
The ability to track the distribution and differentiation of progenitor and stem cells by high-resolution in vivo imaging techniques would have significant clinical and research implications We have developed a cell labeling approach using short HIV-Tat peptides to derivatize superparamagnetic nanoparticles The particles are efficiently internalized into hematopoietic and neural progenitor cells in quantities up to 10-30 pg of superparamagnetic iron per cell Iron incorporation did not affect cell viability, differentiation, or proliferation of CD34+ cells Following intravenous injection into immunodeficient mice, 4% of magnetically CD34+ cells homed to bone marrow per gram of tissue, and single cells could be detected by magnetic resonance (MR) imaging in tissue samples In addition, magnetically labeled cells that had homed to bone marrow could be recovered by magnetic separation columns Localization and retrieval of cell populations in vivo enable detailed analysis of specific stem cell and organ interactions critical for advancing the therapeutic use of stem cells

read more

Citations
More filters
Journal ArticleDOI

Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications

TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.
Journal ArticleDOI

Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications

TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Journal ArticleDOI

In vivo cancer targeting and imaging with semiconductor quantum dots

TL;DR: Sensitive and multicolor fluorescence imaging of cancer cells under in vivo conditions are achieved and a whole-body macro-illumination system with wavelength-resolved spectral imaging is integrated for efficient background removal and precise delineation of weak spectral signatures.
Book ChapterDOI

Applications of magnetic nanoparticles in biomedicine

TL;DR: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed and the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed.
Posted Content

Nanomaterials and nanoparticles: Sources and toxicity

TL;DR: A review of the toxicity of nanoparticles is presented in this paper, with the goal of informing public health concerns related to nanoscience while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them.
References
More filters
Journal ArticleDOI

Isolation of putative progenitor endothelial cells for angiogenesis.

TL;DR: It is suggested that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarianAngiogenesis.
Journal ArticleDOI

In Vivo Protein Transduction: Delivery of a Biologically Active Protein into the Mouse

TL;DR: It is shown that intraperitoneal injection of the 120-kilodalton beta-galactosidase protein, fused to the protein transduction domain from the human immunodeficiency virus TAT protein, results in delivery of the biologically active fusion protein to all tissues in mice, including the brain.
Journal ArticleDOI

Tat-mediated delivery of heterologous proteins into cells.

TL;DR: Tat-mediated uptake may allow the therapeutic delivery of macromolecules previously thought to be impermeable to living cells to be delivered to tissue culture.
Journal ArticleDOI

Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-independent

TL;DR: The present demonstration, that a reverse helix and a helix composed of D-enantiomers still translocate across biological membranes at 4 and 37°C strongly suggests that the third helix of the homeodomain is internalized by a receptor-independent mechanism.
Related Papers (5)