scispace - formally typeset
Journal ArticleDOI

The global fire–productivity relationship

Juli G. Pausas, +1 more
- 01 Jun 2013 - 
- Vol. 22, Iss: 6, pp 728-736
TLDR
In this paper, the intermediate fire-productivity model has been validated across all world ecosystems, including Antarctica, and it has been suggested that on a global scale, fire activity changes along the productivity/aridity gradient following a humped relationship.
Abstract
Aim It has been suggested that on a global scale, fire activity changes along the productivity/aridity gradient following a humped relationship, i.e. the intermediate fire–productivity hypothesis. This relation should be driven by differing relative roles of the main fire drivers (weather and fuel) along the productivity gradient. However, the full intermediate fire–productivity model across all world ecosystems remains to be validated. Location The entire globe, excluding Antarctica. Methods To test the intermediate fire–productivity hypothesis, we use the world ecoregions as a spatial unit and, for each ecoregion, we compiled remotely sensed fire activity, climate, biomass and productivity information. The regression coefficient between monthly MODIS fire activity and monthly maximum temperature in each ecoregion was considered an indicator of the sensitivity of fire to high temperatures in the ecoregion. We used linear and generalized additive models to test for the linear and humped relationships. Results Fire occurs in most ecoregions. Fire activity peaked in tropical grasslands and savannas, and significantly decreased towards the extremes of the productivity gradient. Both the sensitivity of fire to high temperatures and above-ground biomass increased monotonically with productivity. In other words, fire activity in low-productivity ecosystems is not driven by warm periods and is limited by low biomass; in contrast, in high-productivity ecosystems fire is more sensitive to high temperatures, and in these ecosystems, the available biomass for fires is high. Main conclusion The results support the intermediate fire–productivity model on a global scale and suggest that climatic warming may affect fire activity differently depending on the productivity of the region. Fire regimes in productive regions are vulnerable to warming (drought-driven fire regime changes), while in low-productivity regions fire activity is more vulnerable to fuel changes (fuel-driven fire regime changes).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The lanky and the corky: Fire-escape strategies in savanna woody species

TL;DR: In this article, the authors are grateful to the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), the Coordenacado de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), and the Spanish Government (VIRRA and TREVOL projects, CGL2009-12048/BOS and CGL2012-39938-C02-00) for financial support and the scholarships granted to the authors.
Journal ArticleDOI

Fire and plant diversity at the global scale

TL;DR: In this paper, the authors used available global plant diversity information at the ecoregion scale and compiled productivity, heterogeneity and fire information for each eoregion using 15 years of remotely sensed data collected throughout the late 20th and early 21st century.
Journal ArticleDOI

Divergent responses of fire to recent warming and drying across south-eastern Australia

TL;DR: It is predicted that an increase in fire was more likely to have occurred in moist, temperate forests near the coast than in arid and semiarid woodlands of the interior, due to inherent contrasts in the respective dominant fuel types.
References
More filters
Journal ArticleDOI

Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity

TL;DR: It is shown that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons.
Journal ArticleDOI

Generalized Additive Models: An Introduction With R

TL;DR: Robinson, R. (2007). Generalized Additive Models: An Introduction With R.(2007).
Related Papers (5)