scispace - formally typeset
Open AccessJournal ArticleDOI

The ischemic environment drives microglia and macrophage function.

Reads0
Chats0
TLDR
The selective responses of microglia and macrophages to hypoxia after stroke are discussed and relevant markers are reviewed with the aim of defining the different subpopulations of myeloid cells that are recruited to the injured site.
Abstract
Cells of myeloid origin, such as microglia and macrophages, act at the crossroads of several inflammatory mechanisms during pathophysiology. Besides pro-inflammatory activity (M1 polarization), myeloid cells acquire protective functions (M2) and participate in the neuroprotective innate mechanisms after brain injury. Experimental research is making considerable efforts to understand the rules that regulate the balance between toxic and protective brain innate immunity. Environmental changes affect microglia/macrophage functions. Hypoxia can affect myeloid cell distribution, activity, and phenotype. With their intrinsic differences, microglia and macrophages respond differently to hypoxia, the former depending on ATP to activate and the latter switching to anaerobic metabolism and adapting to hypoxia. Myeloid cell functions include homeostasis control, damage-sensing activity, chemotaxis, and phagocytosis, all distinctive features of these cells. Specific markers and morphologies enable to recognize each functional state. To ensure homeostasis and activate when needed, microglia/macrophage physiology is finely tuned. Microglia are controlled by several neuron-derived components, including contact-dependent inhibitory signals and soluble molecules. Changes in this control can cause chronic activation or priming with specific functional consequences. Strategies, such as stem cell treatment, may enhance microglia protective polarization. This review presents data from the literature that has greatly advanced our understanding of myeloid cell action in brain injury. We discuss the selective responses of microglia and macrophages to hypoxia after stroke and review relevant markers with the aim of defining the different subpopulations of myeloid cells that are recruited to the injured site. We also cover the functional consequences of chronically active microglia and review pivotal works on microglia regulation that offer new therapeutic possibilities for acute brain injury.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

C-Reactive Protein Levels and Clinical Prognosis in LAA-Type Stroke Patients: A Prospective Cohort Study.

TL;DR: High CRP level predicts poor functional outcome in LAA-type AIS patients, which provides a strong basis for clinicians to make treatment decisions for these patients.
Journal ArticleDOI

Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia

- 09 Aug 2022 - 
TL;DR: In this paper , the role of the lactate receptor HCAR1 in tissue repair after neonatal cerebral hypoxia-ischemia (HI) in mice was investigated.
Journal ArticleDOI

Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm.

TL;DR: In this paper , the authors proposed a new model of the ischemic penumbra, one which they hope will lay the foundation for future translational success, focusing on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts.
Journal ArticleDOI

Microglia Fighting for Neurological and Mental Health: On the Central Nervous System Frontline of COVID-19 Pandemic

TL;DR: In this paper, the authors discuss how microglia may be involved in the neuroprotective and neurotoxic responses against CNS insults deriving from COVID-19 and examine how these responses may explain, at least partially, the neurological and psychiatric manifestations reported in CoV-19 patients and the general population.

The role of NF-κB in hypoxia-induced gene expression.

TL;DR: In this paper, the authors investigated the mechanisms of hypoxia activation of HIF and NF-κB and how these signaling pathways interact, uncovering new therapeutic modalities in a diverse range of disease states including cancer, vascular disease, and chronic inflammation.
References
More filters
Journal ArticleDOI

Alternative activation of macrophages

TL;DR: The evidence in favour of alternative macrophage activation by the TH2-type cytokines interleukin-4 (IL-4) and IL-13 is assessed, and its limits and relevance to a range of immune and inflammatory conditions are defined.
Journal ArticleDOI

The chemokine system in diverse forms of macrophage activation and polarization.

TL;DR: Recent evidence suggests that differential modulation of the chemokine system integrates polarized macrophages in pathways of resistance to, or promotion of, microbial pathogens and tumors, or immunoregulation, tissue repair and remodeling.
Journal ArticleDOI

Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes

TL;DR: These functionally polarized cells, and similarly oriented or immature dendritic cells present in tumors, have a key role in subversion of adaptive immunity and in inflammatory circuits that promote tumor growth and progression.
Journal ArticleDOI

Macrophage plasticity and polarization: in vivo veritas

TL;DR: The identification of mechanisms and molecules associated with macrophage plasticity and polarized activation provides a basis for Macrophage-centered diagnostic and therapeutic strategies.
Journal ArticleDOI

Protective and pathogenic functions of macrophage subsets

TL;DR: The four stages of orderly inflammation mediated by macrophages are discussed: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis.
Related Papers (5)