scispace - formally typeset
Open AccessJournal ArticleDOI

The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance.

Reads0
Chats0
TLDR
Results suggest that the combination of P-gp gene silencing and cytotoxic drug delivery using targeted nanoparticles can overcome tumor drug resistance.
About
This article is published in Biomaterials.The article was published on 2010-01-01 and is currently open access. It has received 299 citations till now. The article focuses on the topics: Targeted drug delivery & Drug delivery.

read more

Citations
More filters
Journal ArticleDOI

PLGA-based nanoparticles: An overview of biomedical applications

TL;DR: This review presents why PLGA has been chosen to design nanoparticles as drug delivery systems in various biomedical applications such as vaccination, cancer, inflammation and other diseases.
Journal ArticleDOI

Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

TL;DR: This review offers a detailed description of different cytotoxic drug carriers, such as liposomes, carbon nanotubes, dendrimers, polymeric micelles,polymeric conjugates and polymeric nanoparticles, in passive and active targeted cancer therapy, by enhancing the permeability and retention or by the functionalization of the surface of the carriers.
Journal ArticleDOI

Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery

TL;DR: This review will focus on the nature of the polymers involved in the preparation of targeted nanocarriers, the synthesis methods to achieve the desired macromolecular architecture, the selected coupling strategy, and the choice of the homing molecules (vitamins, hormones, peptides, proteins, etc.), as well as the various strategies to display them at the surface of nanoccarriers.
Journal ArticleDOI

Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals

TL;DR: The results indicate that MSNs are biocompatible, preferentially accumulate in tumors, and effectively deliver drugs to the tumors and suppress tumor growth.
Journal ArticleDOI

Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell Line

TL;DR: It is demonstrated that mesoporous silica nanoparticles (MSNP) can be functionalized to effectively deliver a chemotherapeutic agent doxorubicin (Dox) as well as Pgp siRNA to a drug-resistant cancer cell line (KB-V1 cells) to accomplish cell killing in an additive or synergistic fashion.
References
More filters
Journal ArticleDOI

Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells

TL;DR: 21-nucleotide siRNA duplexes provide a new tool for studying gene function in mammalian cells and may eventually be used as gene-specific therapeutics.
Journal ArticleDOI

Nanocarriers as an emerging platform for cancer therapy

TL;DR: The arsenal of nanocarriers and molecules available for selective tumour targeting, and the challenges in cancer treatment are detailed and emphasized.
Journal Article

A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs

TL;DR: It is speculated that the tumoritropic accumulation of smancs and other proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels in tumors of tumor-bearing mice.
Journal ArticleDOI

Multidrug resistance in cancer: role of ATP–dependent transporters

TL;DR: The ability to predict and circumvent drug resistance is likely to improve chemotherapy, and it has become apparent that resistance exists against every effective drug, even the authors' newest agents.
Journal ArticleDOI

Biodegradable nanoparticles for drug and gene delivery to cells and tissue

TL;DR: Based on the above mechanism, various potential applications of nanoparticles for delivery of therapeutic agents to the cells and tissue are discussed.
Related Papers (5)