scispace - formally typeset
Open AccessJournal ArticleDOI

Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds

TLDR
The largest available database of potentially exfoliable 2D materials has been obtained via high-throughput calculations using van der Waals density functional theory.
Abstract
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.

read more

Citations
More filters
Journal ArticleDOI

Magnetic 2D materials and heterostructures.

TL;DR: In this paper, the authors discuss the difference between magnetic states in 2D materials and in bulk crystals and present an overview of the 2D magnets that have been explored recently, focusing on the case of the two most studied systems-semiconducting CrI3 and metallic Fe3GeTe2.
Journal ArticleDOI

Graphene and two-dimensional materials for silicon technology.

TL;DR: The opportunities, progress and challenges of integrating atomically thin materials with silicon-based nanosystems are reviewed, and the prospects for computational and non-computational applications are considered.
Journal ArticleDOI

Magnetic 2D materials and heterostructures

TL;DR: The difference between magnetic states in 2D materials and in bulk crystals is discussed and the range of new van der Waals heterostructures that became possible with the appearance of 2D magnets are offered, offering new perspectives in this rapidly expanding field.
Journal ArticleDOI

Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications

TL;DR: In this article, the state-of-the-art progress on MXene theory, materials synthesis techniques, morphology modifications, opto-electro-magnetic properties, and their applications are comprehensively discussed.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Related Papers (5)